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Abstract. The position–momentum dot product (‘posmom’) s = r · p of a
particle is a quantum mechanical observable. In principle, its density S(s) can be
derived from the position or momentum wavefunction using Mellin transforms
but this leads to complicated integrals and it has therefore been largely neglected
by the molecular physics community. However, we show that S(s) can be
obtained easily as the Fourier transform of the hyperbolic autocorrelation of the
wavefunction. Our findings are illustrated using numerical results for various
states of a harmonic oscillator, a hydrogenic ion and particles in a box.
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1. Introduction

Heisenberg’s uncertainty principle stipulates that, because the quantum mechanical operators
for the position r and momentum p of a particle do not commute, these variables cannot
be measured simultaneously and a true phase-space density S(r, p) does not exist. This
fundamentally non-classical result is inconvenient for Rassolov models [1]–[8] of electron
correlation, in which the Hartree–Fock Hamiltonian is augmented by a linear phase-space
operator that approximates the correlation energy for a single determinant wavefunction.
Therefore, in order to make progress, most of those models have resorted to the Wigner quasi-
density distribution [9]

W (r, p)= (π h̄)−3

∫
ψ∗(r + q)ψ(r − q)e2i p·q/h̄ dq, (1)

where ψ(r) is the position wavefunction. W (r, p) has the correct marginal densities |ψ(r)|2

and |φ( p)|2 (where φ( p) is the momentum wavefunction) but, as Wigner recognized, it is not
necessarily positive at all points in phase space.

Fortunately, it appears that the true S(r, p) is superfluous for many Rassolov models and
reduced densities contain most of the physical information that is required. In this paper, we are
interested in the position–momentum dot product (‘posmom’)

s = r · p =
d

dt

(
1

2
mr 2

)
, (2)

of a particle. It is an important dynamical quantity and the sum of the posmoms of N particles is
the scalar virial. Given that knowledge of s does not imply simultaneous knowledge of r and p,
one sees that the uncertainty principle does not necessarily preclude the measurement of s and,
indeed, it is well known [10] that s is represented by an unbounded self-adjoint operator [11]
and therefore is an observable.
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The posmom operator in one dimension (1D) and in the position representation is

s̄ =
1

2
(x̄ p̄ + p̄x̄)= −ih̄

(
1

2
+ x

d

dx

)
, (3)

which yields the unitary operator on L2(R)
Uλ = eiλs̄/h̄, λ ∈ R. (4)

Uλ scales the position and momentum wavefunctions as

(Uλψ)(x)= e+λ/2ψ(e+λx), (5)

(Uλφ)(p)= e−λ/2φ(e−λ p), (6)

and the set Uλ is called the dilation group. The operator s̄ is the generator of dilation and has
been used in a variety of fields of physics, including the spectral analysis of the Schrödinger
Hamiltonian [12, 13] and in the development of scattering theory [14, 15]. More recently, s̄
has arisen as a Hamiltonian for quantum mechanical models of the zeros of the Riemann zeta
function [16]–[18] and a method for the indirect experimental measurement of s (called the
hyperbolic momentum) has been proposed [17].

The posmom operator is diagonalized [19, 20] through a Mellin transform [21] and its
normalized eigenfunctions f ±

s (x) are defined [22, 23] on the positive and negative axes by

f +
s (x)=

{
(2π h̄)−1/2 x−1/2+is/h̄, x > 0,

0, x 6 0,
(7a)

f −

s (x)=

{
0, x > 0

(2π h̄)−1/2
|x |

−1/2+is/h̄, x < 0.
(7b)

These can be rotated into even and odd functions and one can then obtain the posmom density
from the position or momentum wavefunction. However, this becomes mathematically difficult
in complicated systems and, as a result, the posmom has been largely overlooked in the
molecular physics community. This is unfortunate because s contains physical information that
is inaccessible from measurements of the position or momentum densities.

In section 2, we show that the difficulties of the Mellin transforms can be avoided
by recognizing that the posmom density S(s) is the Fourier transform of the hyperbolic
autocorrelation of the position or momentum wavefunction. This new approach allows the
facile construction of the posmom density of the electrons in molecular systems and offers
fresh insights into the results of electronic structure calculations. In section 3, we illustrate
this through numerical results for various states of a harmonic oscillator, a hydrogenic ion and
particles in a box.

2. Theory

2.1. Posmom density

Our approach is motivated by the observation that, from the normalized eigenfunctions

fp(x)= (2π h̄)−1/2 exp(ipx/h̄) (8)
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of the momentum operator

p̄ = −ih̄
d

dx
, (9)

one can construct even and odd functions

f e
p (x)= (2π h̄)−1/2 cos(px/h̄), (10a)

f o
p (x)= (2π h̄)−1/2 sin(px/h̄), (10b)

and obtain the momentum density

5(p)=

∣∣∣∣∫ ∞

−∞

f e
p (x)ψe(x)

∣∣∣∣2

+

∣∣∣∣∫ ∞

−∞

f o
p (x)ψo(x)

∣∣∣∣2

(11)

in terms of contributions from the even and odd parts of the position wavefunction

ψ(x)= ψe(x)+ψo(x). (12)

In much the same way, the posmom eigenfunctions (7) can be rotated into sets of even and
odd functions

f e
s (x)= (4π h̄)−1/2

|x |
−1/2+is/h̄, (13a)

f o
s (x)= sgn (x) f e

s (x), (13b)

and, by analogy with (11), the posmom density is then

S(s)=

∣∣∣∣∫ ∞

−∞

f e
s (x)ψe(x)

∣∣∣∣2

+

∣∣∣∣∫ ∞

−∞

f o
s (x)ψo(x)

∣∣∣∣2

=
|Me(σ )|

2 + |Mo(σ )|
2

π h̄
, (14)

where we have introduced the dimensionless variable

σ = 1/2 − is/h̄ (15)

andMe andMo are the Mellin transforms of ψe and ψo [21]. It is clear that S(s) is both real and
even and we will therefore restrict our attention to s > 0. Moreover, to simplify our formulae,
we will also assume that s is measured in units of h̄.

Unfortunately, the Mellin pathway (14) leads to complicated integrals, especially in higher
dimensions, and historically this has hindered the routine construction of S(s) in electronic
structure calculations. However, in appendix A, we show that the Fourier transform

Ŝ(k)=

∫
∞

−∞

S(s) e−iks ds (16)

of the posmom density can be cast into the form

Ŝ(k)=

∫
∞

−∞

ψ∗(e+kh̄/2x) ψ(e−kh̄/2x) dx, (17)

or equivalently, by Parseval’s theorem,

Ŝ(k)=

∫
∞

−∞

φ∗(e−kh̄/2 p) φ(e+kh̄/2 p) dp. (18)
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These beautiful equations reveal that Ŝ(k) is simply the overlap between dilated and anti-
dilated versions of the position (or momentum) wavefunction and we will therefore call Ŝ(k)
the hyperbolic autocorrelation.

For a particle in ν dimensions, it can be shown that

Ŝ(k)=

∫
ψ∗(e+kh̄/2r) ψ(e−kh̄/2r) dr, (19)

and these integrals are so much simpler than those in the Mellin formulation (14) that it now
becomes possible to generate the posmom density S(s) easily from the results of conventional
electronic structure calculations on arbitrary molecular systems.

Because Ŝ(k) is both real and even, we will restrict our attention to k > 0. We will also
assume henceforth that k is measured in units of h̄−1.

2.2. Many-particle systems

Posmom theory extends easily to N -particle systems, especially within independent-electron
models. If the wavefunction is a (bosonic) Hartree product

9(r)= S[ψ1(r1)ψ2(r2) . . . ψN (r N )], (20)

or a (fermionic) Slater determinant

9(r)=A[ψ1(r1)ψ2(r2) . . . ψN (r N )] (21)

(where S andA are symmetrizing and antisymmetrizing operators) of orthogonal orbitalsψ j(r),
it can be shown that the hyperbolic autocorrelation

Ŝ(k)=

N∑
j=1

∫
ψ∗

j (e
+k/2r) ψ j(e

−k/2r) dr (22)

is a sum of contributions from each orbital. It follows, therefore, that the density S(s) is also
sums of orbital contributions.

3. Examples

3.1. Harmonic oscillator

The nth state of the 1D quantum mechanical harmonic oscillator with h̄ = m = k = 1 and
Hamiltonian

H̄ = −
1

2

d2

dx2
+

1

2
x2 (23)

has the position wavefunction

ψn(x)=
Hn(x) exp(−x2/2)

π 1/4
√

2nn!
, (24)

where Hn(x) are the nth Hermite polynomials [24] and the energy

En = n + 1/2. (25)

Equation (19) yields the hyperbolic autocorrelations

Ŝn(k)= Pn( sech k) sech1/2k, (26)
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Figure 1. Hyperbolic autocorrelations Ŝ0(k) (solid), Ŝ1(k) (dashed) and Ŝ2(k)
(dotted) of a 1D harmonic oscillator.

where Pn is the nth Legendre polynomial [24]. In particular, the three lowest states yield

Ŝ0(k)= sech1/2k, (27a)

Ŝ1(k)= sech3/2k, (27b)

Ŝ2(k)=
3
2sech5/2k −

1
2sech1/2k, (27c)

and these are compared in figure 1. The curves coincide at k = 0 because the corresponding
densities are normalized. As n increases, the Ŝn(k) tighten around the origin. As k increases, the
Ŝ2n(k) and Ŝ2n+1(k) decay as O(e−k/2) and O(e−3k/2), respectively.

Fourier inversion of (26) yields the posmom densities

Sn(s)=
24n

23/2π 2

bn/2c∑
j=0

(−1) j

28 j

0(n − j + 1
2)

j!(2n − 4 j)!

∣∣∣∣0 (
n − 2 j + σ

2

)∣∣∣∣2

, (28)

where 0 is the gamma function [24] and σ is defined in (15). For the lowest states, one finds

S0(s)= 2−3/2π−3/2
∣∣∣0 (σ

2

)∣∣∣2
, (29a)

S1(s)= 21/2π−3/2

∣∣∣∣0 (
σ + 1

2

)∣∣∣∣2

, (29b)

S2(s)= 21/2π−3/2s2
∣∣∣0 (σ

2

)∣∣∣2
, (29c)

and these are shown in figure 2. As expected, the posmom density broadens as n increases. At
s = 0, the densities drop from S0(0)≈ 0.83 to S1(0)≈ 0.38 to S2(0)= 0. For large s,

S0(s)∼ π−1/2s−1/2 exp(−πs/2), (30a)

S1(s)∼ 2π−1/2s1/2 exp(−πs/2), (30b)

S2(s)∼ 2π−1/2s3/2 exp(−πs/2), (30c)

showing that the decay rate decreases slightly as n increases.
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Figure 2. Posmom densities S0(s) (solid), S1(s) (dashed) and S2(s) (dotted) of a
1D oscillator.

0 5 10 15 20 25
s

0.01

0.02

0.03

0.04

0.05

Figure 3. Posmom density S20(s) (solid) and the classical analog P20(s) (dot-
dash) for the n = 20 state of a 1D oscillator.

We now turn our attention to highly excited states and the correspondence principle. A
classical oscillator with m = k = 1 and E = n + 1/2 evolves in time t as

xn(t)=
√

2E sin t, (31)

pn(t)=
√

2E cos t, (32)

sn(t)= E sin 2t, (33)

and the classical time-averaged probability density for s is easily shown to be

Pn(s)=

{
π−1

(
E2

− s2
)−1/2

, s < E,

0, s > E .
(34)

Figure 3 compares the posmom and classical densities for the n = 20 state. If we ignore the
fine structure, S20(s) clearly approaches the classical limit. The posmom density predicts that
classically forbidden values of the posmom (i.e. s > n + 1/2) have non-vanishing probabilities.
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Figure 4. Posmom densities S0,0(s) (solid), S1,1(s) (dashed) and S2,2(s) (dotted)
of a 2D oscillator.

Extensions to the harmonic oscillator in higher dimensions are not difficult because the
wavefunctions, and thus the hyperbolic autocorrelations, factorize into Cartesian components.
Thus, for a 2D oscillator, the hyperbolic autocorrelation is

Ŝm,n(k)= Ŝm(k) Ŝn(k), (35)

where the Ŝ j(k) are given by (26). This yields, for example, the posmom densities

S0,0(s)=
1

2
sech

(πs

2

)
, (36a)

S1,1(s)=
s2 + 1

4
sech

(πs

2

)
, (36b)

S2,2(s)=
3s4 + 6s2 + 11

64
sech

(πs

2

)
, (36c)

and these are shown in figure 4. The ground-state density for the 2D oscillator is clearly flatter
than its 1D analogue in figure 2.

By analyzing the motion of a classical harmonic oscillator in 2D (with Ex = Ey = n + 1
2

and E = Ex + Ey), one can show that the classical time-averaged posmom density is

Pn,n(s)=

{
2π−2 E−1 K (1 − s2/E2), s < E,

0, s > E,
(37)

where K is the complete elliptic integral of the first kind [24] and figure 5 shows that the
posmom density S20,20(s) approaches this limit quite closely.

3.2. Hydrogenic ions

The position wavefunctions

ψnlm(r)= Rnl(Zr)Ylm(θ, φ), (38)

of a hydrogenic ion with nuclear charge Z factorize into radial and angular parts. Varying Z
leads to a simple length dilation of the ψnlm(r) and therefore has no effect on the hyperbolic
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Figure 5. Posmom density S20,20(s) (solid) and classical density P20,20(s) (dot-
dash) for a highly excited 2D oscillator.

autocorrelations and posmom densities. Substituting equation (38) into equation (19), one finds

Ŝnlm(k)=

∫
∞

0

∫ π

0

∫ 2π

0
R∗

nl(e
+k/2r) Y ∗

lm(θ, φ) Rnl(e
−k/2r) Ylm(θ, φ) r 2 sin θ dr dθ dφ

=

∫
∞

0
R∗

nl(e
+k/2r) Rnl(e

−k/2r) r 2 dr (39)

which shows that the Ŝnlm(k) and Snlm(s) depend only on the radial part of the wavefunction.
Solving the integral (39) gives

Ŝnlm(k)= P (0,2l+1)
n−l−1

(
2 sech2 k

2
− 1

)
sech2l+3 k

2
, (40)

where P (a,b)
n is a Jacobi polynomial [24] and this yields

Snlm(s)= Qnl(s
2) sech(πs), (41)

where Qnl is a polynomial. The hyperbolic autocorrelations for the three lowest states are

Ŝ100(k)= sech3 k

2
, (42a)

Ŝ200(k)= −2 sech3 k

2
+ 3 sech5 k

2
, (42b)

Ŝ210(k)= sech5 k

2
, (42c)

and these yield the posmom densities

S100(s)=
1
2(4s2 + 1) sech(πs), (43a)

S200(s)=
1
8(4s2 + 1)2 sech(πs), (43b)

S210(s)=
1

24(16s4 + 40s2 + 9) sech(πs), (43c)
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Figure 6. Posmom densities S100(s) (solid), S100(s) (dashed) and S210(s) (dotted)
of a hydrogenic ion.

which are shown in figure 6. The radial parts of the 1s and 2p wavefunctions are nodeless
and their posmom densities S100(s) and S210(s) are therefore qualitatively similar, possessing
maxima at s = 0 and decaying monotonically as s increases. In contrast, because the 2s
wavefunction has a radial node at r = 2/Z , its posmom density S200(s) is qualitatively different,
rising to a maximum near s = 1.

3.3. A particle in a box

The wavefunctions for a particle inside a 1D box of length L centered at x = 0 are

ψn(x)=

{√
2/L cos(nπx/L), n odd,

√
2/L sin(nπx/L), n even,

(44)

and their energies are

En =
n2π2

2L2
. (45)

Using (19), one finds the hyperbolic autocorrelations

Ŝn(k)= j0(nκ) sech
k

2
, (46)

where j0 is a spherical Bessel function [24] and

κ =
π

1 + coth(k/2)
, (47)

and we note that the Ŝn(k) are independent of L because it simply induces a dilation. The
resulting posmom densities are

Sn(s)=
1

2nπ2

∣∣∣∣in−σγ

(
σ,

inπ

2

)
− iσ−nγ

(
σ,−

inπ

2

)∣∣∣∣2

, (48)

where γ (a, z) is the incomplete gamma function [24].
The densities of the lowest states of particle in a box are shown in figure 7 and are

remarkably similar to the analogous densities (figure 2) for the harmonic oscillator. However,
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Figure 7. Posmom densities S1(s) (solid), S2(s) (dashed) and S3(s) (dotted) of a
particle in a 1D box.
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Figure 8. Posmom density S20(s) (solid) and classical density P20(s) (dot-dash)
for the n = 20 state of a particle in a 1D box.

whereas the third state of the harmonic oscillator has a node at s = 0, the same state of a particle
in a box has S3(0)≈ 0.04.

Like the harmonic oscillator, the particle in a box behaves classically when n is large. In
classical mechanics, its position is uniformly distributed between −L/2 and +L/2 and, because
its energy given by (45) is kinetic, its momentum p = ±nπ/L . It follows that its classical
posmom density is uniformly distributed and

Pn(s)=

{
(nπ)−1, s < nπ/2,

0, s > nπ/2.
(49)

Figure 8 compares P20(s) with the true density S20(s). Ignoring fine structure, it is clear that
S20(s) is approaching the classical limit.

Extensions to higher-dimensional boxes are straightforward because of the same Cartesian
factorization that was exploited for the harmonic oscillator. For example, the hyperbolic
autocorrelation in a 2D box is

Ŝm,n(k)= j0(mκ) j0(nκ) sech2 k

2
. (50)
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3.4. Fermions in a box

Suppose that 2N non-interacting fermions occupy the lowest N orbitals in a 1D box. Then the
hyperbolic autocorrelation (22) is

Ŝ1D(k)= 2 sech
k

2

N∑
n=1

j0(nκ)

= 2N −

[
π 2 N (N + 1)(2N + 1)

72
+

N

4

]
k2 + · · · . (51)

The even moments of S(s) are easily extracted from the derivatives of Ŝ(k) at k = 0 and one
finds that the root-mean-square (rms) value of a particle’s posmom is

s1D
rms =

√
π 2(N + 1)(2N + 1)

72
+

1

4
≈
πN

6
. (52)

In a square (2D) box, the hyperbolic autocorrelation is

Ŝ2D(k)= 2 sech2 k

2

∑
nx ,ny

j0(nxκ) j0(nyκ) (53)

where the sum is over lattice points in a Fermi quadrant. If this sum is approximated by an
integral, we obtain

Ŝ2D(k)≈ 2 sech2k
∫
πr2/4<N

j0(xκ) j0(yκ) dr

= 2N −

[
2πN 2

12
+

N

2

]
k2 + · · · (54)

from which the rms posmom is

s2D
rms ≈

(
πN

6

)1/2

. (55)

In a cubic (3D) box, an analogous treatment yields

Ŝ3D(k)≈ 2 sech3 k

2

∫
πr3/6<N

j0(xκ) j0(yκ) j0(zκ) dr

= 2N −

[
62/3π 4/3 N 5/3

20
+

3N

4

]
k2 + · · · (56)

from which the rms posmom is

s3D
rms ≈

(
3π 2 N

20
√

5

)1/3

. (57)

The results in (52), (55) and (57) show that the rms posmom of a particle in a ν-dimensional
Fermi gas varies as N 1/ν . This is illustrated in figure 9, which shows S(s) for 204 non-interacting
fermions in 1D, 2D and 3D boxes. Whereas the posmom density in 1D is almost uniform, it
decays almost linearly in 2D and becomes bell-shaped in 3D.
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Figure 9. Posmom densities S(s) of the ground state of 204 fermions in a 1D
(solid), a 2D (dashed) and 3D (dotted) box.

4. Conclusion

We have shown that probability density S(s) of the position–momentum dot product s =

r · p is the Fourier transform of a hyperbolic autocorrelation of the position (or momentum)
wavefunction and we have used this to examine S(s) for a variety of quantum systems.

Posmom densities for highly excited states approach the appropriate classical densities, as
expected from the correspondence principle.

The posmom density is an observable that may prove to be an informative quantity if
measured experimentally and we are now performing a comprehensive study of the posmom
densities of small atoms and molecules [25]. It will also be useful in future developments of
electron correlation models that utilize information about both the positions and momenta of
electrons.
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Appendix A. Hyperbolic autocorrelation

The Fourier transform of the first term in expression (14) for the posmom density is

Ŝe(k)=
1

π

∫
∞

−∞

|Me(σ )|
2 e−iks ds. (A.1)

By substituting the definition of the Mellin transform and using the Dirac identity

1

2π

∫
∞

−∞

zise−iks ds = δ(k − ln z) (A.2)
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to integrate over s, we obtain

Ŝe(k)=
1

π

∫
∞

0

∫
∞

0

∫
∞

−∞

u+is

√
u
ψ∗

e (u)
v−is

√
v
ψe(v)e

−iksds dv du

= 2
∫

∞

0

∫
∞

0
ψ∗

e (u)ψe(v)
δ[k − ln(u/v)]

√
uv

dv du

= 2
∫

∞

0
ψ∗

e (u)ψe(e
−ku)e−k/2 du

= 2
∫

∞

0
ψ∗

e (e
+k/2x)ψe(e

−k/2x) dx

=

∫
∞

−∞

ψ∗

e (e
+k/2x)ψe(e

−k/2x) dx . (A.3)

Proceeding similarly, one can show

Ŝo(k)=
1

π

∫
∞

−∞

|Mo(σ )|
2 e−iks ds (A.4)

=

∫
∞

−∞

ψ∗

o (e
+k/2x)ψo(e

−k/2x) dx (A.5)

and the Fourier transform of the total posmom density is therefore given by (17), as required.

Appendix B. Quasi-hyperbolic autocorrelation

Some readers may wonder about the relationship between the exact posmom density and the
Wigner distribution (1). In fact, it is possible to take the classical average of the Wigner
distribution as an estimate of the posmom density, and an analogous reduction was used [4, 8]
to construct the dot intracule from the Omega intracule.

Proceeding in this way, the 1D distribution

W (x, p)= (π h̄)−1

∫
∞

−∞

ψ∗(x + q)ψ(x − q)e2ipq/h̄dq (B.1)

yields the posmom quasi-density

SW (s)=

∫
∞

−∞

W
(

x,
s

x

) dx

|x |
, (B.2)

and its Fourier transform can then be recast as

ŜW (k)=

∫ [∫
W

(
x,

s

x

) dx

|x |

]
e−iks ds

=
1

π

∫∫∫
ψ∗(x + q)ψ(x − q)eis(2q/x−k)ds dq

dx

|x |

=

∫∫
ψ∗(x + q)ψ(x − q) δ

[
k −

2q

x

]
2dq

|x |
dx

=

∫
ψ∗

(
x +

k

2
x

)
ψ

(
x −

k

2
x

)
dx . (B.3)
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In general, for a particle in ν dimensions, one can show (reintroducing the units) that

ŜW (k)=

∫
ψ∗([1 +

k

2
h̄]r) ψ([1 −

k

2
h̄]r) dr (B.4)

and comparison of this with (19) and the exponential series

exp

(
±

k

2
h̄

)
= 1 ±

k

2
h̄ + · · · (B.5)

reveals that ŜW (k), obtained from a classical average, is a first-order approximation to Ŝ(k).
Thus, the quasi-density is correct to O(h̄) and becomes exact in the classical limit h̄ → 0.
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