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We study nonlinear localization of a two-component Bose-Einstein condensate (BEC) in a one-
dimensional optical lattice. Our theory shows that spin-dependent optical lattices can be used to
effectively manipulate the nonlinear interactions between the BEC components, and to observe
composite localized states of a BEC in both bands and gaps of the matter-wave spectrum.
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of scattering lengths. Consequently, novel types of non-
linear localization of coherent matter waves can be

made dimensionless by adopting the units of length xL �
k�1, energy ER � 	h2k2=2m, and time !�1 � 	h=ER.
Current experiments on Bose-Einstein condensates
(BECs) in optical lattices, including nonlinear Landau-
Zener tunneling [1], modulational instability of Bloch
waves [2], and diffraction compensation [3,4], indicate
growing interest in nonlinear dynamics of coherent mat-
ter waves in tunable periodic potentials. The interdisci-
plinary nature of these studies is highlighted by strong
parallels [5] drawn between nonlinear optics of ultracold
atoms in lattices and behavior of optical waves in periodic
nonlinear photonic structures, where instability and lo-
calization phenomena have been well explored [6]. Akin
to optical waves in periodic photonic structures, such as
waveguide arrays and photonic crystals, coherent matter
waves in optical lattices display a band-gap spectrum,
which modifies diffraction properties of atomic wave
packets [7]. The coexistence of both normal and anoma-
lous diffraction regimes was predicted to lead to non-
linear localization of a condensate with either attractive
or repulsive interactions in the gaps of a linear Bloch-
wave spectrum [8]. Bright gap solitons of a repulsive BEC
were recently observed [9].

Most of the studies of coherent matter waves in optical
lattices are concerned with single-component BECs.
However, condensate mixtures can display many novel
physical effects not found in single-species BECs [10].
Experiments on spin-dependent optical lattices [11] have
shown that a two-component BEC composed of two
hyperfine states of the same atomic species can be effec-
tively and coherently manipulated in an optical lattice.
Recently, mean-field analysis of periodic Bloch states of a
multicomponent BEC in a lattice [12,13] has revealed that
the modulational instability of excited periodic states can
potentially lead to the formation of multicomponent lo-
calized states (solitons) [13].

In this Letter, we consider nonlinear localization of a
two-component BEC and formation of composite atomic
solitons in an optical lattice. We show that an optical
lattice can be used to modify the effective nonlinear
interactions both within and between the BEC compo-
nents, without the Feshbach resonance manipulation
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achieved both in gaps and bands of the linear Bloch-
wave spectrum. In particular, when one of the BEC
components is in a periodic Bloch (band) state, the second
component exhibits effective periodic potential induced
by the mean-field of the Bloch-wave, and can be localized
within the induced gap. As a result, localization of a BEC
in a self-induced lattice can occur in the form of a two-
component ‘‘band-gap’’ soliton.

Localization of the two-component BEC, assisted by
manipulation of effective nonlinear interactions in an
optical lattice, can be explored in the current BEC experi-
ments. However, our theory has much wider applicability.
For instance, it can be applied to the physics of two-
component light fields in photonic lattices [6], where the
possibility of intergap localization of multicomponent
coherent light has already been suggested [14]. More-
over, the BEC localization in a Bloch-wave-induced
periodic potential discussed here can be linked to local-
ization processes in a wide range of optical [15] and solid
state [16] systems exhibiting nonlinear self-modulation.

We model the dynamics of a two-component BEC with
repulsive interactions by the mean-field equations for the
wave functions of the condensate components jai and jbi:
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where L̂Ln � �@2=@x2 � Vn�x� � gnnj�nj
2, and L̂Lab �

gab�a�
�
b. We assume that the two BEC components

can exhibit different potentials, namely: Va�x� �
V0sin

2�kLx� and Vb�x� � V0sin
2�kLx� ��, which can be

shifted relative to each other, e.g., by varying the polar-
ization angle in the case of a spin-dependent lattice [11].
The lattice potentials are less constrained than those
realized in [11], to enable treatment of two different
atomic species [17] that can be manipulated indepen-
dently. The one-dimensional model (1) is derived for
strongly anisotropic BEC clouds with the tight confine-
ment directions transverse to that of the lattice [8]. It is
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FIG. 1. Schematics of the chemical potential vs momentum
of the BEC components, relative to the lattice band-gap struc-
ture, necessary to achieve the (a) attractive-attractive,
(b) repulsive-repulsive, and (c) repulsive-attractive effective
nonlinear interactions. In (b) and (c), for a given location of
the jai component either of the jbi states can be chosen.
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The stationary states of the wave function of the
nth BEC component are found as �n�x; t� �  n�x� 	
exp��i�nt�, where �n is the chemical potential normal-
ized by ER. Without the repulsive mean-field interactions,
the ground and excited states of each of the BEC compo-
nents are periodic matter waves:  n � �n�x� exp�ikx�,
where the lattice momentum k lies within a Brillouin
zone. The periodicity of the lattice leads to the band-
gap structure of the spectrum �n�k�. At the jth edge of
the Brillouin zone�n 
 �fjg

n , the wave function�fjg
n �x� �

�fjg
n �x� �=kL� is a periodic Bloch state. Bloch-wave

spectrum in the reduced-zone representation (jkj< 1) is
shown schematically in Fig. 1.

A BEC wave packet, located in the k space near the jth
band edge, can be described as a corresponding Bloch
wave, dressed by a slowly varying (in x) envelope,
�n�x; t;�

fjg
n � � �n�x; t��

fjg
n �x�. For the two components

jai and jbi positioned at the band edges i and j, respec-
tively, the envelope equations [14] take the form
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where the effective diffraction of the wave packet
is defined by the curvature of the corresponding
band edge, Dfi;jg

a;b � �@2�a;b=@k
2��a;b��

fi;jg
a;b

. The interaction

coefficients depend on the overlap of the Bloch states at
the band edges: ~ggfijgab � gfijgab

R
j�fjg

a �
fjg
b j2dx. Hence, the

relative displacement of the spin-dependent lattice poten-
tials can enhance or dampen the cross-component non-
linear interactions without changing the effective
diffraction, which introduces a new control parameter
into the system. Moreover, Eqs. (2) and their complex
conjugate form are equivalent, so the case of anomalous
diffraction (Dn < 0) [7] translates into the more intuitive
normal diffraction form, by changing signs of the effec-
tive nonlinear coefficients ~gg.

Equations (2) predict three regimes of the effective
nonlinear interactions that can be realized for two-com-
ponent BECs in a lattice by appropriate preparation of the
BEC wave packets relative to the band structure, as shown
in Figs. 1(a)–1(c). Experimental preparation of the wave
packets with a given k involves moving the optical lattice
relative to the condensate [3,18]; higher bands can be
populated by phase or amplitude modulations of the
lattice [18]. Below we consider only the two lowest bands,
B1 (�f1gjk�0  �  �f2gjk�1) and B2 (�f3gjk�1  � 
� � �f4gjk�0).

Attractive-attractive interaction regime [Fig. 1(a)] can
be realized when ~ggaa;bb; ~ggab;ba < 0, j~ggaaj � j~ggbbj �
j~ggabj � j~ggbaj 
 ~gg. In this regime, near the band edge
� � �f2gjk�1 both condensate components exhibit
anomalous diffraction, and therefore can exhibit self-
focusing in the form of two-component bright gap sol-
itons. Equations (2) take the form of the integrable
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Manakov system, well studied in the context of nonlinear
optics (see, e.g., [19]). According to Eq. (2), both local-
ized components can be treated as ground states of the
same effective potential Veff

a;b � ~gg�j�aj
2 � j�bj

2�; they
have equal chemical potentials �a � �b and widths,
i.e., �a�x� � �0�x� cos�, �b�x� � �0�x� sin�, where
�0�x� �

�������������������
2�a=~ggaa

p
sech�

�������
�a

p
x�, and � is arbitrary.

The existence domain for two-component solutions in
the parameter space f�a;�bg can also be calculated using
Eqs. (1). Assuming that the atomic populations of the
two-component are largely dissimilar (e.g.,  2

a �  2
b),

one can decouple Eqs. (1) and find, numerically, spatial
profiles of stationary gap solitons of the larger compo-
nent,  a�x;�a�, in the entire gap �f2g

a  �a  �f3g
a . The

low-density second component, jbi, then exhibits an ef-
fective potential Veff

b � Vb�x� � gab 
2
a, due to both the

optical lattice and mean-field interaction with the jai
component (the self-contribution of jbi to Veff

b is negli-
gible). The cutoff value�0

b��a� for the first bound state of
the condensate wave function  b in the effective potential
Veff
b defines the lower boundary of the existence domain

for two-component localized states; the upper boundary
is �b � �a. Effective potential analysis of Eqs. (1) con-
firms the prediction of Eqs. (2) that, in the case of equal
effective interaction coefficients, the boundaries of the
existence domain coincide on the line �b � �a (see
Fig. 2). This degeneracy can be lifted by shifting the
lattices relative to each other. The shift unbalances the
interaction coefficients so that ~ggab=~ggaa > 1, which, ac-
cording to the envelope theory, yields the new cut-
off values for the  b modes, �0

b � ��a=4��1�����������������������������
1� 8~ggab=~ggaa

p
�2 > �a. The boundaries of the signifi-

cantly expanded existence domain found by the effective
potential analysis of Eqs. (1), with � � �=4, are shown in
Fig. 2 by dashed lines. In a two-component state, each of
the BEC components induces an effective potential for
the other, thus the existence domain for a composite gap
soliton always has two boundaries defined by the cutoff
lines �0

b��a� and �0
a��b� (see Fig. 2). We note that the

effective potential analysis described above is equivalent
to the linear waveguiding approach which is widely used
in the theory of multicomponent optical solitons [20].
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FIG. 3 (color online). Existence domains for the dark-bright
atomic solitons (V0 � 4). Shaded: two lowest Bloch bands
B1a;b and B2a;b exhibited by the condensate components jai
and jbi. Solid: borders of the existence domains in repulsive-
repulsive regime for � � 0. Dotted: borders of the existence
domains for � � �=4. Top (bottom) panels: condensate wave
functions in the repulsive-repulsive (attractive-repulsive) re-
gime at the marked points, found by solving the time-
independent Eqs. (1).
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FIG. 2 (color online). Existence domain for the bright-bright
atomic gap solitons in the f�a;�bg plane (V0 � 4). Shaded: two
lowest Bloch bands B1a;b and B2a;b exhibited by the condensate
components jai and jbi. Solid: existence line �a � �b pre-
dicted by the envelope theory and effective potential calcula-
tions for � � 0. Dashed: borders of the existence domain for
� � �=4. Top panels: condensate wave functions at the marked
points, found by solving time-independent Eqs. (1). Lattice
potentials are shown by dotted/green lines.
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A repulsive-repulsive regime [Fig. 1(b)] can be
achieved when ~ggaa;bb; ~ggab;ba > 0, j~ggabj � j~ggbaj, and the
wave packets are located either at the same, j~ggaaj � j~ggbbj,
or different, j~ggaaj � j~ggbbj, band edges. Let us first
consider the BEC wave packet located at the edge of
the second band (B2a), �a � �f3g

a jk�1. It experiences
normal diffraction and can support a dark soliton
with the envelope �a�x� �

����������������
�a=~ggaa

p
tanh�

������������
�a=2

p
x�, im-

printed onto the extended background of a Bloch-wave
�f3g
a �x� [21]. Such a dark state with a zero group velocity

can exist within the entire band, and can be created
experimentally by a phase-imprinting technique. In a
two-component BEC, the Bloch state in jai component
induces a periodic potential for the jbi component which
acts together with the potential of the optical lattice. As a
result, the band-gap structure of the Bloch-wave spec-
trum for the jbi component is significantly modified. The
original bands are shifted, so that the edge of the second
band �f3g

b coincides with the chemical potential of the
nonlinear Bloch state �f3g

a (see Fig. 3). The remarkable
effect of the condensate-induced lattice potential is that
the jbi component can now be spatially localized in every
gap of the induced band-gap structure in the form of a
bright gap soliton. The existence domains for the coupled
states calculated using the effective potential approach,
lie entirely within the original bands B1 and B2. This
type of localization could have a dramatic experimental
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manifestation, whereby formation of a bright soliton in
one of the BEC components can be achieved by phase
imprinting onto the Bloch state of the complementary
component in the spectral band. This effect can be ob-
served when both components are located either at the
same or the opposite band edges [Fig. 1(b)], but always in
the normal diffraction regime, where the localization of a
single-component repulsive BEC in the form of a bright
soliton is impossible. Therefore, although the dark-bright
state can be dynamically stable [see Figs. 4(a) and 4(c)],
decoupling of the BEC components leads to rapid spread
of the bright state, proportional to its mean-field energy
[Figs. 4(b) and 4(d)].

Dark-bright solitons supported by repulsive nonlinear-
ity have been previously discussed in the context of non-
linear optics [19] and BEC in a harmonic potential [22].
The striking difference between the dark-bright localized
states in the optical lattice and dark-bright BEC solitons
in a harmonic potential is that the bright component in
the lattice is localized in the gaps of the induced band-gap
structure. This creates multiple existence domains for the
dark-bright state that are adjacent to the edges of the
180405-3
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FIG. 4 (color online). Temporal evolution of a dark-bright
localized state in the repulsive-repulsive regime obtained by
solving Eqs. (1) with both components initially within (a),(b)
the second band, at �a � 4:2, �b � 4:18, and (c),(d) the first
band at �a � 1:62, �b � 1:6. Shown are (a),(c) initial spatial
density profiles and (b),(d) profiles of the coupled state and
(bold) a spreading bright component decoupled from the dark
one at (b) t � 1:35 ms and (d) t � 2:7 ms. Note the slower
expansion for the lower density state (c).
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induced bands. In contrast to the case of bright-bright gap
solitons, these existence domains shrink (dotted lines in
Fig. 3) when � � 0. Another feature of the dark-bright
localized states is their inhibited mobility across the
lattice, which affects their interaction properties.

Repulsive-attractive regime [Fig. 1(c)] can be accessed
when ~ggaa; ~ggab < 0, ~ggbb; ~ggba > 0, j~ggabj � j~ggbaj, and
j~ggaaj � j~ggbbj. In the absence of optical lattice, this type
of interactions could be explored only for a mixture of
BECs with the opposite signs of the scattering lengths.
Within the lattice, the condensate wave packets should not
be both prepared at the same band edge, which can pose
an experimental challenge. In this regime, the envelope
Eqs. (2) predict the existence of ‘‘normal’’ and ‘‘reverse’’
pairs of dark-bright solitons [20]. In the normal case, a
dark soliton on the Bloch-wave background in the normal
diffraction regime (e.g., at �a � �f3g

a ) is coupled to a
bright gap state in the anomalous diffraction regime
(e.g., at �b � �f2g

b ). Both components can exist indepen-
dently as dynamically stable localized states, and the
coupling is achieved for ~gg2ab < j~ggaa~ggbbj. Typical examples
of condensate wave functions in this regime are shown in
Fig. 3(c) and 3(d). The bright localized component jai
exists in the entire gap, whereas the dark jbi component
forms a coupled state only in the vicinity of the band
edge. The composite state is stabilized in the lattice but is
unstable with respect to the mutual displacement of its
constituents [20] in the lattice-free case.

Finally, we estimate the typical soliton parameters,
assuming the spinor BEC of 87Rb, an optical lattice
with � 0:4 �m spacing [11], and the atomic clouds aspect
ratio of 10. We are interested in the case of relatively
shallow optical lattices, with V0 < 5ER, and the chemical
potentials �a;b & V0 (see Figs. 2 and 3 for V0 � 4ER). In
this regime localization effects are due to the nonlinear
interactions. The number of atoms in the nth component
of a localized state can be calculated as Nn �
g�1
nn

R
 2
n�x�dx, where gnn is the appropriately scaled 1D

nonlinear interaction coefficient. Bright-bright solitons
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near the lower edges of the first gaps [e.g., at �a;b �
1:96 in Fig. 2(a)] are widespread and contain a low
number of atoms Na;b � 102, in agreement with the ex-
perimental observations of single-component gap solitons
[9]. Well localized, higher atom number states are found
further within the gap [Fig. 2(b)]. The dark-bright com-
posite states near the upper edges of the induced gaps [see
Figs. 3 and 4(a)] are characterized by a wider bright
component that can contain an order of magnitude more
atoms, Nb � 103, than the near-edge bright-bright gap
solitons.

In conclusion, we have shown theoretically that optical
lattices can be used to vary both the type and magnitude
of nonlinear intercomponent interactions in BEC mix-
tures, and to observe two-component atomic solitons,
both in the gaps and bands of the linear Bloch-wave
spectrum. The experimental investigation of dark-bright
composite states (and their transport properties) within
linear spectral bands could be of particular interest.
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