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Enhanced Soliton Transport in Quasiperiodic Lattices with Introduced Aperiodicity
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We study linear transmission and nonlinear soliton transport through quasiperiodic structures, where the
lattice profiles are described by multiple modulation frequencies. We show that resonant scattering at
mixed-frequency resonances limits transmission efficiency of localized wave packets, leading to radiation
and possible trapping of solitons. We obtain an explicit analytical expression for optimal quasiperiodic
lattice profiles, where additional aperiodic modulations suppress mixed-frequency resonances, resulting in
dramatic enhancement of soliton mobility. Our results can be applied to the design of photonic waveguide
structures, and arrays of magnetic micro-traps for atomic Bose-Einstein condensates.
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Periodic structures can provide an efficient control of
wave transmission and localization, making it possible to
realize new physical regimes that are not allowed in homo-
geneous systems. Photonic crystals and Bragg gratings are
used to tailor dispersion, diffraction, and emission of elec-
tromagnetic waves [1,2] and similar concepts have been
developed and demonstrated for management of atomic
Bose-Einstein condensates in periodic potentials [3,4].
Quasiperiodic photonic structures such as optical super-
lattices and 2D quasicrystals can offer even more flexibility
in designing the properties of optical [5] and atomic matter
waves [6,7]. The modulation of quasiperiodic structures is
defined by multiple incommensurable spatial frequencies,
resulting in the lack of translational symmetry which is a
feature of conventional periodic structures. This gives rise
to an important effect of stronger field confinement at
certain locations due to position-dependent coupling be-
tween the lattice sites, which can be utilized for various
applications including efficient lasing [8].

Many novel phenomena in periodic structures originate
due to the modification of the linear spectrum which is
separated into a number of transmission bands and band
gaps, where waves experience total reflection [2]. For a
one-dimensional lattice with period d, the gaps are cen-
tered at the frequencies corresponding to Bragg resonance
condition for the wave vector component across the lattice,
2kx � mK, where m � �1;�2; . . . is the order of reso-
nance and K � 2�=d is the wave number of lattice modu-
lation. In a quasiperiodic structure, primary gaps are
defined by several dominant frequencies Kj; however,
there also appear resonances at mixed frequencies Kj �
Kl, resulting in a complicated spectrum containing mul-
tiple mini-bands and mini-gaps [9]. This can have a detri-
mental effect on the propagation of wave packets through
the lattice, which can be inhibited [6,7] or accompanied by
strong radiation [10]. It has been predicted that nonlinear
wave self-action, which is known to appear due to atom-
atom scattering in BEC or light-matter interactions in
optical crystals, can suppress Anderson localization and
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allow wave transmission through disordered systems [11].
We find that such nonlinear transmission may be also
possible in quasiperiodic lattices in the form of gap solitons
(see Refs. [12–17], and references therein). Since the
soliton is localized, its spectrum spans over an extended
frequency range, and the radiation losses for a moving
soliton appear when its spectrum overlaps mixed-
frequency resonances. Resolution of these limitations
may open new possibilities for realizing efficient transport
of optical and matter waves in quasiperiodic structures.

In this Letter, we suggest a novel approach to the design
of quasiperiodic structures. We show that mixed-frequency
resonances can be suppressed through additional aperiodic
lattice modulations which inhibit coherent backscattering
at specific frequencies. Aperiodicity is often associated
with disorder, leading to the appearance of critically and
fully localized states or Anderson localization [7,18].
However, we present an analytical procedure which can
be used to define, in a systematic way, quasiperiodic struc-
tures with specially introduced aperiodicity possessing
regular (absolutely continuous) band-gap spectrum, where
all eigenmodes are either extended or exponentially decay-
ing. These ‘‘optimal’’ structures allow for unrestricted
motion across the lattice of solitons strongly localized in
any of the primary gaps, in full analogy with conventional
periodic structures.

We consider below wave transport and soliton motion in
effectively discrete systems, such as arrays of optical
waveguides or coupled-resonator structures in photonic
crystals [19] or arrays of traps for matter waves [20] where
the wave transport is defined through tunneling between
fundamental modes of the neighboring wells. This process
can be described, in the tight-binding approximation, by
the discrete nonlinear Schrödinger (or Gross-Pitaevskii)
equation for the normalized amplitudes En,
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� Cn;n�1En�1 � Cn;n�1En�1

� VnEn �F �n; jEnj
2�En � 0: (1)
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Here n is the number of waveguide or potential well, z
is the propagation distance or time, Cnm are coupling co-
efficients, Vn characterizes the detuning between the
different sites, and F defines the nonlinear response
[F �n; 0� � 0]. We note that the energy conservation law,
P �

P
njEnj

2 � const leads to the requirement that the
coupling coefficients are symmetric, Cn;n�1 � Cn�1;n.
In engineered photonic structures such as waveguide ar-
rays [15,19], there is a flexibility in designing both the
on-site potential and also the coupling coefficients. These
can be controlled independently by adjusting the wave-
guide widths and their positions, as schematically illus-
trated in Figs. 1(a) and 1(b). Recently demonstrated arrays
of magnetic micro-traps [21] can be used to precisely
design, in a similar way, the trapping potentials for atomic
condensates.

The properties of discrete equation (1) with a modulated
potential Vn but homogeneous coupling C � const were
extensively investigated with applications to the problem
of electron transport and localization (see Refs. [18,22–
25], and references therein). It was found that quasi-
periodic modulations of Vn may lead to Anderson local-
ization [26] and inhibit wave propagation. We show in the
following that specially designed modulation of intersite
coupling with a constant on-site potential can provide the
optimal conditions for linear and nonlinear wave transport
in quasiperiodic systems.

We first analyze the characteristic features of wave
transport in lattices where the intersite coupling is defined
by a superposition of M harmonic modulations, Cn;n�1 �PM
m�0 Am cos�Kmn� ’m�, where Am, Km, and ’m are free

coefficients. For incommensurable modulation frequencies
Km, the lattice is quasiperiodic, and the Bloch theorem
cannot be applied to define the linear spectrum of small-
amplitude waves in the form En;� exp�i�z�, where the
spectral parameter � has the meaning of the propagation
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FIG. 1 (color online). Sketch of refractive index (or negative
potential) in a lattice with a quasiperiodic modulation of
(a) effective on-site potential, proportional to index contrast,
and (b) coupling between the lattice sites, inversely proportional
to waveguide separation.
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constant or frequency for optical waves, or negative chemi-
cal potential for matter waves. Then, we define the inverse
localization length as follows:

���� � lim
n!1

��������
2

n
log� max

n=2<j<n
jEj;�j= max

1<j<n=2
jEj;�j	

��������; (2)

which we calculate numerically by selecting a sufficiently
large computation window to achieve the required accu-
racy. This dependence defines the linear spectrum: �! 0
for extended waves inside the transmission bands, and � >
0 correspond to band gaps. The characteristic band-gap
spectrum is shown in Fig. 2 (top panel): there is a funda-
mental gap at large �, as well as large additional gaps
corresponding to Bragg-reflection resonances at the domi-
nant modulation frequencies Km. Each of these gaps can
support bright solitons in a full analogy with periodic
structures [12–17]. We perform numerical simulations
and find that such solitons can be excited using the same
input conditions as in periodic lattices although some
radiation is lost at the input; see Fig. 2 (bottom). Speci-
fically, the input in the form of a tilted Gaussian beam,
En�z � 0� � A0 exp��n2=w2 � ikn�, can be used to gen-
erate a soliton associated with the fundamental gap, similar
to discrete solitons is periodic lattices [14]. The gap soli-
tons are generated using a two-beam [15,16] input, En�z �
0� � A1 exp��n2=w2 � ik1n� � A2 exp��n2=w2 � ik2n�.
Here the beams’ inclination angles (kj) are chosen to match
the Bragg resonance at the modulation frequency Km,
FIG. 2 (color online). Top: Band-gap diagram shown as in-
verse localization length vs the propagation constant, calculated
over 1000 lattice sites. The lattice modulation is given by Eq. (2)
with M � 2; Km ’ 0; 0:44�; 0:72�; Am ’ 3:44; 1:02; 1:09; ’m ’
0; 2:73; 3:42. Bottom: Dynamics of discrete and gap solitons
corresponding to the total internal reflection and Bragg-
reflection gaps as indicated by arrows; darker shading corre-
sponds to larger field intensities. Solitons are excited by a single
tilted beam with A0 ’ 0:47, k � 0:05�, w � 5 (discrete) or two
tilted beams with A1 � A2 ’ 0:27, k1 � �0:17�, k2 � 0:27�,
w � 15 (gap soliton).
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FIG. 3 (color online). Example of a lattice with quasiperiodic
coupling and constant on-site potential [as sketched in Fig. 1(b)]
calculated with Eqs. (6) and (4): (a) Coupling vs lattice site;
(b) Fourier spectrum of the coupling coefficient, shown with
different vertical scale in top and bottom plots. Solutions of
Eq. (4) are calculated for �1 � 6:5, �2 � 4,  �1�0 ’ 0:51,  �1�1 ’

�0:34,  �2�0 ’ �0:25,  �2�1 ’ 0:75, and C � 1.
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�k2 � k1� ’ Km, where the inclination of the combined
wave front �k1 � k2� can be introduced to induce a soliton
motion across the lattice. However, we observe that the
presence of mini-gaps strongly affects the wave transport
through the lattice. Indeed, the motion of the discrete
soliton is arrested as it becomes trapped [Fig. 2 (bottom,
right)], similar to effects in disordered systems [27], be-
cause the first transmission band (at 6:45<�< 7:15) is
fragmented. The mini-gaps in the second band (at 3:8<
�< 4:45) are weaker, allowing for the motion of the gap
soliton [Fig. 2 (bottom, left)]; however, it continuously
emits strong radiation during the propagation since its
spectrum overlaps the mini-gaps. These simulations are
performed for a self-focusing Kerr-type nonlinearity, F �
jEnj

2, and similar effects were identified for a defocusing
nonlinearity as well.

We now suggest an analytical approach that allows one
to calculate the optimal modulation of lattice coupling,
where the mixed-frequency resonances are suppressed
providing for improved linear and nonlinear wave trans-
port. We note that the model Eq. (1) has an analog in the
form of an Ablowitz-Ladik system [28],

i
@ n
@z
� � n�1 �  n�1��C� k nk2� � 0; (3)

where  n � � 
�1�
n ;  

�2�
n ; . . . ;  �M�n � is a vector function de-

fining the profiles of multiple interacting components, and
k nk2 �

P
mj 

�m�
n j2. This is considered to be an integrable

model [28], where solitons would interact elastically (with-
out radiation losses) with other nonlinear waves, including
extended quasiperiodic modes. We find that by identifying
the effective modulations of lattice coupling induced by
quasiperiodic nonlinear waves in the framework of Eq. (3),
we can then define equivalent optimal modulation for the
original Eq. (1). Specifically, we consider solutions of
Eq. (3) in the form of stationary modulated waves
 �m�n �z� �  �m�n �0� exp�i�mz�, where the profiles  �m�n �0�
satisfy a set of difference equations,

��m 
�m�
n � � 

�m�
n�1 �  

�m�
n�1��C� k nk

2� � 0: (4)

The waves with oscillating amplitudes  n induce, in the
general case, a quasiperiodic lattice with an effective
modulation of coupling coefficients, ~Cn;n�1 � C�
k nk2. The lattice modulation can be controlled by choos-
ing the number of modes, the values of �m, and the initial
conditions  0 and  1. Dynamics of small-amplitude ex-
citations �n �  �M�1�

n in such lattices is governed by a
scalar linear equation with the modulated coupling

i
@�n

@z
� ��n�1 ��n�1� ~Cn;n�1 � 0: (5)

Most importantly, we observe in numerical simulations
that each modulated wave  �m�n of Eq. (4) may give rise
to a corresponding Bragg-reflection gap for the spectrum of
Eq. (5), however there are no gaps at mixed-frequency
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resonances. We expect that this remarkable property is
related to the fact that Eqs. (4) are integrable [29], since
the mixed resonances do arise for nonintegrable analogs of
Eq. (4). We now introduce a scaling transformation for the

mode amplitude, �n ! �n

��������������
~Cn;n�1

q
, which preserves the

structure of the band-gap spectrum and simultaneously
transforms Eq. (5) into a linearized Eq. (1) with symmetric
coupling found as

Cn;n�1 � Cn�1;n �
���������������������������
~Cn;n�1

~Cn�1;n

q

�
���������������������������������������������������������
�C� k nk

2��C� k n�1k
2�

q
: (6)

This is the key expression which defines an optimal cou-
pling that can be implemented in real periodic structures.

We show in Fig. 3(a) characteristic quasiperiodic modu-
lation of the intersite coupling coefficient calculated using
Eqs. (4) and (6). The Fourier spectrum of the coupling
coefficient calculated over 1000 lattice sites contains 5
dominant Fourier components [Fig. 3(b), top], which de-
fine the quasiperiodic modulation. However, the bottom
plot in Fig. 3(b) demonstrates that there is also a continu-
2-3



FIG. 4 (color online). Band-gap structure and soliton dynamics
in a lattice which modulation corresponds to Fig. 3. Input
conditions are the same as in Fig. 2.
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ous set of smaller components which describe aperiodic
modulations of the lattice. We note that this introduced
aperiodicity preserves the long-range order in the lattice. In
order to investigate the effect of such modulation, we have
chosen the solution parameters for two coupled Eqs. (4) in
such a way that dominant peaks in the coupling spectrum
[Fig. 3(b), top] exactly correspond to the harmonic modu-
lations used for Fig. 2. Then, we calculate the inverse
localization length (Fig. 4, top) and find that the mini-
gaps are absent, in sharp contrast to the band-gap spectrum
of lattice with purely harmonic modulations (Fig. 2, top).
Moreover, the solitons launched under the same initial
condition are now able to propagate through the lattice
(Fig. 4,bottom) with a minimal amount of radiation. We
note that some radiation is observed at the initial stage due
to nonideal input conditions modeling one-beam [14] and
two-beam [15,16] experimental arrangements; however,
radiation losses of propagating solitons are practically
negligible, resembling radiation in periodic lattices [30]
that remains exponentially small in a broad parameter
region. It is most remarkable that aperiodic modulations
defined by Eq. (6) can dramatically improve linear and
nonlinear wave propagation and soliton dynamics in qua-
siperiodic lattices. This is fundamentally different from
effects in other types of nonoptimized aperiodic structures
such as those defined through modified Thue-Morse se-
quences, where propagation of fundamental lattice solitons
is still accompanied by radiation due to mixed-frequency
resonances and gap solitons were not identified [25].

In conclusion, we have demonstrated that linear wave
propagation and soliton motion in lattices with exactly
quasiperiodic modulation of their parameters can be af-
fected by Bragg resonances at mixed modulation frequen-
cies, leading to soliton trapping or strong radiation losses.
11390
However, these negative effects can be suppressed in lat-
tices with additional aperiodic modulations, and we have
presented a systematic analytical method for calculating
the parameters of such optimized lattices. These results
can be used, for example, to design photonic structures,
such as waveguide arrays, and arrays of traps for atomic
condensates.

A. S. acknowledges useful discussions with Yuri Kivshar
and Costas Soukoulis.
2-4
[1] J. D. Joannopoulos et al., Photonic Crystals: Molding the
Flow of Light (Princeton University Press, Princeton,
1995).

[2] P. St. J. Russell et al., in Photonic Bloch Waves and
Photonic Band Gaps Confined Electrons and Photons,
edited by E. Burstein and C. Weisbuch (Plenum,
New York, 1995), pp. 585–633.

[3] M. Cristiani et al., Phys. Rev. A 65, 063612 (2002).
[4] T. Anker et al., Phys. Rev. Lett. 94, 020403 (2005).
[5] M. E. Zoorob et al., Nature (London) 404, 740 (2000).
[6] L. Sanchez Palencia and L. Santos, Phys. Rev. A 72,

053607 (2005).
[7] V. W. Scarola and S. Das Sarma, cond-mat/0506415.
[8] M. Notomi et al., Phys. Rev. Lett. 92, 123906 (2004).
[9] J. M. Hollingworth, A. Vourdas, and N. Backhouse, Phys.

Rev. E 64, 036611 (2001).
[10] M. Sumetsky et al., Opt. Express 10, 332 (2002).
[11] S. A. Gredeskul and Yu. S. Kivshar, Phys. Rep. 216, 1

(1992).
[12] C. M. de Sterke and J. E. Sipe, in Gap Solitons Progress in

Optics Vol. XXXIII, edited by E. Wolf (North-Holland,
Amsterdam, 1994), pp. 203–260.

[13] B. J. Eggleton et al., Phys. Rev. Lett. 76, 1627 (1996).
[14] J. W. Fleischer et al., Phys. Rev. Lett. 90, 023902 (2003).
[15] D. Mandelik et al., Phys. Rev. Lett. 92, 093904 (2004).
[16] D. Neshev et al., Phys. Rev. Lett. 93, 083905 (2004).
[17] B. Eiermann et al., Phys. Rev. Lett. 92, 230401 (2004).
[18] C. M. Soukoulis and E. N. Economou, Waves Random

Media 9, 255 (1999).
[19] D. N. Christodoulides, F. Lederer, and Y. Silberberg,

Nature (London) 424, 817 (2003).
[20] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353

(2001).
[21] A. Guenther et al., Phys. Rev. Lett. 95, 170405 (2005).
[22] S. Aubry and G. Andre, Ann. Isr. Phys. Soc. 3, 133 (1980).
[23] C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett. 48,

1043 (1982).
[24] J. B. Sokoloff, Phys. Rep. 126, 189 (1985).
[25] B. Lindquist, M. Johansson, and R. Riklund, Phys. Rev. B

50, 9860 (1994).
[26] J. Bourgain, Discrete Contin. Dyn. Syst. 10, 75 (2004).
[27] Y. V. Kartashov and V. A. Vysloukh, Phys. Rev. E 72,

026606 (2005).
[28] M. J. Ablowitz et al., Phys. Lett. A 253, 287 (1999).
[29] Yu. B. Suris, Phys. Lett. A 189, 281 (1994).
[30] A. V. Yulin et al., Phys. Rev. Lett. 91, 260402 (2003).


