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We study the interaction of Anderson localized states in an open 1D random system by varying the

internal structure of the sample. As the frequencies of two states come close, they are transformed into

multiply peaked quasiextended modes. Level repulsion is observed experimentally and explained within a

model of coupled resonators. The spectral and spatial evolution of the coupled modes is described in terms

of the coupling coefficient and Q factors of resonators.
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Transport in open disordered media can be diffusive or
localized, depending on the nature of the underlying qua-
simodes, which are, respectively, spread throughout the
sample or exponentially peaked within the sample, with a
typical size given by the localization length [1–3]. The
spatial overlap of localized modes which are close in
frequency couples these states and leads to the formation
of a series of exponential peaks known as necklace states
[4–8]. These states are short-lived with broadened spectral
lines [7,9] and contribute substantially to the overall trans-
mission in samples much thicker than the localization
length L� lloc [6,8]. Though such hybridized states are
critically important in transport and play a significant role
in the localization transition, their formation and the cor-
relation between spatial and spectral properties has not
been explored.

In this Letter, we study the transformation of coupled
Anderson localized states in a random sample as its con-
figuration is altered leading to the hybridization of modes.
Although level repulsion is ordinarily associated with the
diffusive regime [10,11], energy level correlation and re-
pulsion in localized 1D electron systems has been found
theoretically and numerically [12,13]. Here we present the
first experimental evidence of level repulsion of localized
electromagnetic excitations. A simple theoretical model is
introduced which explains the spectral and spatial charac-
teristics of modes in terms of losses within the sample and
the strength of coupling between the modes.

The experiment involves a rectangular microwave wave-
guide opened at both ends, which supports only a single
transverse mode [8]. The waveguide is filled with a sample
comprised of five 4-mm-thick blocks each of low and high
indices of refraction randomly mixed with 31 randomly
oriented 8-mm-thick binary blocks with low and high
index halves. The field inside the sample is weakly coupled
to a cable which is translated along a 2-mm-wide slot cut

along the waveguide in 1 mm steps. Field spectra are
measured using a vector network analyzer.
Measurements are made in a sequence of configurations

in which the spacing between two segments of the sample
at a depth of 60 mm is increased in steps of 0.5 mm up to a
maximum thickness of 14 mm. The position at which the
air gap is introduced was chosen to correspond to the peak
of a single Anderson localized mode of the unperturbed
random sample. This allowed us to tune the frequency of
the selected mode in a manner similar to the tuning of
defect states through a band gap in a periodic structure.
However, here we deal with the Anderson localized states
arising from the interference of the multiply scattered
fields in a statistically homogeneous random system. The
mode frequency shifts across the frequencies of other
localized states which makes it possible to study the cou-
pling of two modes.
The spectral positions of the localized states as functions

of the air gap introduced into the sample are plotted in

FIG. 1 (color online). Resonant frequencies of excited local-
ized modes vs the driving parameter—the air gap inside the
sample. Five pair-interaction regions are circled.
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Fig. 1. The frequencies of modes may cross or exhibit an
anticrossing (level repulsion). In the latter case (regions 1,
2, 4, and 5 of Fig. 1), the coupling within the sample is
accompanied by an exchange of shape, as is seen in Fig. 2.
When the frequencies of the modes are closest, the two
localized states couple into double-peaked quasiextended
modes with the same spatial intensity distribution [Figs. 2
(b) and 2(c)]. In contrast, region 3 in Fig. 1 shows a mode
crossing in which the shapes are not exchanged. This is
seen in Fig. 3, which shows the driven mode passing
through the broad mode closest to the input. The two
modes remain practically independent of each other, ex-
cept for the low-intensity zone (dark horizontal line in
Fig. 3) at the input mode.

Resonant wave transmission through an isolated local-
ized state in a random sample can be described by a simple
model of a wave tunneling through a resonator with semi-
transparent walls [2,14,15]. The dynamics of the field in
the resonator obeys the oscillator equation with an external
force and damping, which accounts for the incident wave
and the finite Q factor of the resonator, respectively.
Extending this model to the case of N localized states
which are close in frequency, we arrive at a system of N
coupled oscillators with the external force acting on the
first of these:

 00
1 þQ�1

1  0
1 þ ð1� �1Þ2 1 ¼ q12 2 þ f0e

�i��;

 00
l þQ�1

l  0
l þ ð1��lÞ2 l ¼ qllþ1 lþ1 þ qll�1 l�1;

 00
N þQ�1

N  0
N þ ð1��NÞ2 N ¼ qNN�1 N�1: (1)

Here  ið�Þ is the field in the ith resonator, � ¼ !0t is the
dimensionless time (!0 is a characteristic central fre-
quency of the problem), 1��i (j�ij�1Þ is the dimension-
less eigenfrequency of the ith resonator, Qi � 1 is the Q
factor describing the losses of the energy in the ith reso-
nator, and qiiþ1 ¼ qiþ1i � 1 is the coupling coefficient of
the ith and ðiþ 1Þth resonators due to the spatial overlap of
their modes; f0 and � (j�� 1j � 1Þ are the amplitude and
frequency, respectively, of the external field exciting the
first resonator. The Q factors can be written as [16]

Q�1
i ¼ �i ð1< i < NÞ; Q�1

1;N ¼ �1;N þ vgTin;out
2l!0

;

(2)

where �i is the dissipation rate in the ith resonator, Tin;out
are the transmission coefficients of the input and output of
the system, vg is the wave group velocity inside the reso-

nator cavity, and l is the cavity length. The last term in
Eqs. (2) accounts for the energy leakage through the out-
ermost resonators.
To establish the correspondence between the model

equation (1) and localized states in a random sample, we
assume, following Refs. [14,15], that  i represents the
peak field of the ith localized state, qiiþ1 i is the amplitude
of the field penetrating the adjacent cavity, and f0 is the
amplitude of the incident wave  0 penetrating the first
localization cavity. Since for a long enough system the
localization length is the only disorder-induced spatial
scale in the problem, we assume

qiiþ1 ’ expð�diiþ1=llocÞ; f0 ’  0 expð�din=llocÞ;
Tin;out ’ expð�2din;out=llocÞ; l� lloc: (3)

FIG. 2 (color online). Experimentally measured normalized
wave intensity vs frequency and coordinate inside the sample
for two localized modes corresponding to region 2 in Fig. 1 at
different values of the driving parameter. Excitations corre-
sponding to the two effective resonators are circled.

FIG. 3 (color online). The same as in Fig. 2 for interaction
region 3 in Fig. 1.
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Here diiþ1 ¼ jXiþ1 � Xij is the distance between adjacent
states at coordinates Xiþ1 and Xi, whereas din ¼ X1 and
dout ¼ L� XN are the distances from the edge localized
states to the corresponding ends of the sample. The local-
ization length is determined through the average value of
the total transmission coefficient T as l�1

loc ¼�hlnTðLÞi=2L [3]. The deterministic equations (1)–(3)
provide an effective description of coupled modes in a
1D random system.

Substituting  i ¼ Ai expð�i��Þ, the set of Eqs. (1) is

reduced to an algebraic equation Ĥ ~� ¼ ~F, with

Ĥ¼

C1 �q1;2 . . . 0 0
�q1;2 . . . �ql�1;l 0 0
. . . �ql�1;l Cl �ql;lþ1 . . .
0 0 �ql;lþ1 . . . �qN�1;N

0 0 . . . �qN�1;N CN

0
BBBBB@

1
CCCCCA
;

(4)

~� ¼ ðA1; . . . ; ANÞT , and ~F ¼ f0ð1; 0; . . . ; 0ÞT , where Ci ¼
ð1� �iÞ2 � �2 � i�Q�1

i ’ 2ð1��i � �Þ � iQ�1
i . The

homogeneous equation Ĥ ~� ¼ 0 determines a set of eigen-
modes, with eigenfrequencies being the eigenvalues of the
matrix (4).

For the sake of simplicity, we consider the case of two
interacting modes, N ¼ 2, and assume that Q1 ¼ Q2 � Q
and q12 � q. Then the complex eigenfrequencies �� ¼
1þ ��� are given by

��� ¼ ��1 þ �2

2
� i

Q�1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2Þ2 þ q2

q
: (5)

This equation describes level anticrossing and the coupling
of isolated resonators to form collective eigenmodes. The
minimal frequency gap q is achieved at resonance �1 ¼
�2. Away from resonance j�1 � �2j � q, the eigenmodes
tend to the modes of isolated resonators. The shapes of the
modes are exchanged when passing through the resonance;
i.e., þ (�) eigenmodes correspond to the first (second)
resonator at �1 � �2 and to the second (first) resonator
when �1 � �2. It is important to note that level repulsion
of electromagnetic modes arises in a finite system in the
regime of strong localization.

If the system is excited by a monochromatic wave with
real frequency � ¼ 1þ ��, as in the experiment, the com-
plex amplitudes A1;2 of the two resonators can be obtained

from Ĥ ~� ¼ ~F, which yields

A1 ¼ �½2ð�2 þ ��Þ þ iQ�1�f0
D

; A2 ¼ qf0
D
;

D ¼ ½2ð�1 þ ��Þ þ iQ�1�½2ð�2 þ ��Þ þ iQ�1� � q2:

(6)

The behavior of jA1;2j2 is essentially determined by the

denominator jDj2, which is at minimum at frequencies

���res ¼ �ð�1 þ�2Þ
2

� 1

2
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2Þ2 þ q2 �Q�2

q
:

(7)

The amplitudes A1;2 and frequencies ��
�
res characterize the

resonant excitation of the system by an external source.
Note that Eq. (7) coincides with Eq. (5) only in the lossless
case Q�1 ¼ 0. Otherwise, there are two different regimes
of the excitation of coupled resonators, determined by the
ratio between losses Q�1 and coupling q. If losses are
small (Q�1 < q), two branches ���res demonstrate anti-

crossing with a frequency gap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �Q�2

p
(Fig. 4). If

losses are greater than the coupling strength, so thatQ�1 >
q, the frequencies ��� merge in the interaction region
ð�1 ��2Þ2 � jq2 �Q�2j (Fig. 5).
The amplitudes (6) forQ�1 < q andQ�1 > q are shown

as functions of the frequency � and detuning (�1 � �2) in
Figs. 4 and 5, respectively. The main features observed
experimentally are reproduced. Different values of � cor-
respond to different frames of Figs. 2 and 3. To facilitate
comparison with the experimental results in Figs. 2 and 3,
the second, output resonator is driven in Fig. 4 (�1 � 0,
�2 � �), while the first resonator is driven in Fig. 5 (�1 �
�, �2 � 0). It is seen in Figs. 2 and 4 that for Q�1 < q
fields in both resonators in the interaction regime
[Figs. 2(b) and 2(c)] exhibit double-peaked spectra (level
repulsion). Collective excitation of two resonators signifies
the formation of quasiextended necklace states. Remark-
ably, away from the resonance [Figs. 2(a) and 2(d)], the
first resonator is effectively excited at one of the resonant
frequencies, close to �� ¼ ��1 [Fig. 4(a)], while the
second resonator is equally excited at both resonant fre-
quencies ���res ’ �1;2 [Fig. 4(b)]. In the regime Q�1 > q,
both Figs. 3 and 5 show that the second resonator is ex-
cited with a single peak in the spectrum [Fig. 5(b)], while
two peaks separated by a dark area driven with the fre-
quency of the second resonator are seen in the first reso-
nator [Fig. 5(a)] [17].

FIG. 4 (color online). Field amplitudes jA1;2j2 in the two
resonators as functions of the incident field frequency � and
detuning � between the resonators. The underlying frequencies
���res are depicted by the dashed lines. Parameters are f0 ¼ 1,
q ¼ 0:2, and Q�1 ¼ 0:1 (Q�1 < q regime).
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The measured and calculated values of the frequency
gap between coupled modes are presented in Fig. 6. The
parameters of the system are

!0

2�
’ 15:5 GHz; lloc ’ 12 mm; !0� ’ 7	 107 s�1;

(8)

and vg ’ c=2:4, whereas the positions of the localized

modes interacting in regions 1–5 (Fig. 1) are equal, re-
spectively, to

X1 ’ 64:64:7:64:64 mm;

X2 ’ 117:192:64:128:235 mm:
(9)

Substituting values (8) and (9) into Eqs. (2) and (3) yields
Q�1

1;2 and q. We calculated the minimum frequency differ-

ence for interacting pairs 1, 2, 4, and 5 (for which Q�1
1 �

Q�1
2 [17]) as Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �Q�2

p
, with Q�1 ¼ ðQ�1

1 þQ�1
2 Þ=2,

and compared it to measured values of the gap (Fig. 1).

Good agreement between the experiment and model is
seen in Fig. 6.
In conclusion, we have observed level repulsion in the

localization regime and have shown that it reflects the
coupling of localization centers. The occurrence of anti-
crossing or crossing of quasimodes as a sample configura-
tion changes depends upon the ratio of the coupling
strength between localized states and loss. These factors
determine the statistics of level spacings and widths and
thus the diffusive or localized regime of wave propagation.
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