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Time-dependent fluctuation theorem
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The fluctuation theoren(FT) is a generalization of the second law of thermodynamics that applies to small
systems observed for short times. For thermostated systems it gives the probability ratio that entropy will be
consumed rather than produced. In the present paper, we propose a version of the FT that applies to thermo-
stated dissipative systems which respond to time-dependent dissipative fields. In testing the time-dependent
fluctuation theorem we provide convincing evidence that sets of trajectories with conjugate values for the
time-integrated entropy production;=@A=* §A), are indeedfor time-reversible dynamical systems such as
those studied heygtime-reversal images of one another. This observation verifies the deep connection between
time-reversal symmetry, the fluctuation theorem, and the second law of thermodynamics.
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INTRODUCTION tion theorem(TFT) was subsequently shown to be valid in
many other ensembles and with different dynamijés.
The fluctuation theorentFT) gives a mathematical ex- Later, Gallavotti and Cohen clarified the proof of the SSFT
pression for the ratio of probabilities that, in a finite thermo-using the Sinai-Ruelle-Bowen meas(i8d. Recently, a deri-
stated system observed for a finite time, the time-averagedation of the TFT using local Lyapunov weights applied to
irreversible entropy productioB, will take on an arbitrary ~arbitrary ensembles and dynamics has been ¢i9¢n _
value A, compared to—A. The FT was first proposed by Many numerical simulations have been performed verify-

Evans, Cohen, and Morriss in 1993]. The FT was then iNg the FT in various ensembles and with various dynamics
expressed as [1-2,4,7-11 The validity of the FT has been confirmed for

systems in the absence of a thermosfidi] and, most re-
ProbS. /ka= A cently, the FT was verified in the isobaric-isothermal en-
rol2/kg=A) =exp(At). (1) semble[7]. Recently the TFT has been confirmed in a labo-
proui/ksz —A) ratory expgrimgnt using optical tweezers applied to a single
colloid particle in solutio{12].

Thus the probability that entropy will be produced rather ~The most generdii.e., ensemble-independgmersion of
than consumed increases exponentially with time and witfihe TFT employs the so-called dissipation functj@h
system size. The theorem applies exactly to transient systems
evolving from equilibrium at=0 toward a nonequilibrium o . £(I'(0),(0)) )
steady stat¢2?], and asymptotically tt—=) to nonequilib- Qttzf dsQ([‘(s)):m[—’}_J dsA([(s)),
rium steady statefl,3]. 0 f(r(t),0) 0

The FT is important for several reasons. It expresses the (2
probability that the second law of thermodynamics will be

violated for a finite system observed for a finite time. It is wheref (I'(0),0) is the phase-space distribution of the initial

one of the few exact mathematical expressions that is valid\se e and(I(t),0) is the initial probability densityi.e.,
even far from equilibrium. Close to equilibrium, Green-Kubo at time t=0) at the time evolved phas&(t). A(T)

relations can be derived from the FZ]. It can also be used . . .
to derive expressions for free energy differences betweem al“../ JI'is the pha;e—§pace compression factor. .
two equilibrium systems, where the differences are computed This general _d|SS|pat|on funcno.n can be used to give a
using nonequilibrium path integratids, 6). general expression for the fluctuation theorem:

Evans, Cohen, and Morriss originally proposed the FT for
ergodic systems with constant-energy dynanfitk They —
showed that the FT was applicable to systems composed of a ProlQ=A) —exp(At) @)
set of steady-state subtrajectories obtained from a single very Prok((_lt= —A) '
long steady-state phase-space trajectory. Their heuristic deri-
vation used Lyapunov weights for sampling phase-space tra-
jectory segments. This version of the FT has since been dé-or thermostated or ergostated systems, the dissipation func-
noted as the steady-state FSSFT) [7]. Evans and Searles tion () is recognizable as the rate of entropy absorption or
[2] subsequently gave a derivation of the FT that used th@roduction, X, by the thermostat. Equatiof8) has been
Liouville measure for a microcanonical ensemble of systemsested via computer simulations for a range of ensembles
where the entropy production was averaged over an erwith a large range of dynamidd,2,4,7—11. With only a
semble of transient nonequilibrium trajectories spawnedsingle exception12], all these previous simulations have
from a single equilibrium trajectory. This transient fluctua- tested nonequilibrium systems subjecteditoe-independent
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external fields. In this paper we demonstrate the validity of 02 [ ’ ‘ :
the FT in nonequilibrium thermostated systems with time-
dependent external fields.

Consider a system dfl interacting particles subject to a 0.1
time-dependent color fieléF;(t). The total system Hamil-
tonian isH(I)=Hy(T) +F(t)=N ;cix;, wherec;=(—1)' L .
is the color field coupling constari.o(I") = pf/2m+<I>(q) is
the internal energy of the system, widlq) being the inter- F, oo |~ ]
particle potential energy. Interparticle interactions are mod-
eled with the Weeks-Chandler-Andersé®WCA) potential
[13] ()= e(lai—ajl), e(a)=4[q **—q"°], o1 | |
q<2Y6 and zero otherwise.

The equilibriumN-particle phase-space distribution func- 3 .
tion is canonical and is given bi(T",0)~ e AlHo+ (1127,
Here Q is the effective mass of a heat bathis the Nose-
Hoover thermostat multiplief14], and 8 is the Boltzmann
factor B=1/kgT=2K/dN+O(1/N), whered is the Carte- t

sian dimension. The equations of motion can be written as
FIG. 1. The wave form of a time-dependent external field that

-0.2 1 1 1 L 1
0.0 1.0 2.0

: :& can be used to verify the fluctuation theorem. This four-step field
b m’ has odd parity under the time-reversal mapping.
Pi=Fi—iciFe(¢)={pi, initial ensemble of phases.e., the system must be ergodi-
1 Pi2 cally consistent This is a standard requirement for the ap-
(= o) > F_(ng DkgT], (4)  plicability of the FT[7]. Secondly the conjugate trajectory

I'*(t), t=P whereMT[I'(t)]=I*(P—t), must be a solu-

b= tion of the equations of motiofA sufficient condition for

' this to occur is that the equations of motion are time revers-
whereF, = — a®(q)/4q;, w is the frequency of the periodic ible and thferfefore t.he time-dgpendent external fie]d must
external field,4(t) is a periodic function(t+ P)= (1), haTve a definite parity under time-reversal symmd(rg.,
P=2m/w, andg=6N+0O(1) is the number of degrees of MTFe(t)]==Fe(P—1)).]
freedom in the system. The dissipative flb5] for this sys-
tem is H3= - JVF,, whereV is the system volume, the NUMERICAL RESULTS
superscript “ad” indicates that the time derivative of the We test Eq.(5) via molecular dynamics simulations. In
Harryltowan is taken in the absence of a thermostat, &nd ey 1 test the time-dependent FT, we use calculations that
=V 2L 1CiPxi- We now substitute the initial phase-space 4y jgentical to previous TFT simulatiofig,7,8,1] except

distribution function of the system into the expression for thesor the time dependence of the external field. Nonequilibrium
general dissipation functiofEq. (2)]. The general dissipa- gjde trajectories are periodically spawned from a main equi-

tion function for this system is then ;= librium trajectory. All trajectories are thermostated using a
— B(11t) fhds Xs)Fe(s)V=—BI(t)F4(t)V.  Substituting NoseHoover thermostat, which, at equilibrium, generates a
this expression into Ed2) yields canonical distribution of phases. The time-dependent exter-
nal field is activated at time=0 for each side trajectory and
_ _ the response of the system is then monitored over the length
Pro J(H)F(t)V=A
In H= AIOF( ) =At. (5)  of the side trajectoryP. The time average of the dissipative

flux is calculated for each transient trajectory and the en-
semble average of the dissipative flux is then calculated from

A time-dependent TFT can exist only if three conditionsthese time averages. The conditions for our test simulations
are mef First, for every trajectory starting at a phaggn), &€ T=1.0, N=8, number densityn=0.4, time step

its conjugate antitrajectory must be observable among the 0_-001, P=2.0, andF.= 0.1_5. A_step po_t_ential with odd
parity was used, as shown in Fig. 1. Initially the external

field is zero, then at timeP/4 the field increases té,

Ipreviously, a version of the FT was derived for systems to which™ 0-15, atP/2 the field changes t6.= —0.15, and the field
Fo andMT(F,) was appliedsee Eq(31) of Ref.[10]], whereMT  changes to zero at timeR34. .
denotes the application of a time-reversal mapping. This differs Figure 2 shows the full ensemble average of the transient
from the current investigation, as here the time-reversal mapping iE€sponses, with the magnitude of the external field scaled by

Prob(— BJ(t)F(1)V=—A)

never explicitly applied. a factor of ten for convenience. The data are qualitatively as
’Here we assume thdt(t) is the same for every trajectory, in one would expect intuitively, or on the basis of the Maxwell
contrast to Ref[10]. model. The ensemble-averaged current is zero until the field
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FIG. 2. The total ensemble-averaged dissipative flux for a sys- FIG. 4. We show a probability histogram of the dissipative flux
tem of N=8 particles(shown as circles The external four-step from the NEMD simulation. The seven bins to the right of yrexis
field (shown as a solid linehas been divided by five for purposes of have positive values for the time-integrated entropy production
the plot. while the seven bins to the left of theaxis have the conjugate

negative values.

is turned on, at which time the current rises abruptly.t At
=1, the current has not yet reached its steady-state valuéf?r time—rever_sible systems with time-dependent external
However, at this time the field drops abruptly f,=  fields. The points near the ends of the curve may appear to
—0.15 and the current immediately begins to fall in an ap-diverge from the FT prediction. However, this is due to in-
proximately exponential fashion. The ensemble-averaged réufficient averaging for those points; they gradually converge
sponse is causal in character, with changes in the ensembf@s the number of transient trajectories in the simulation in-
averaged current taking placafter the external field is Creases. _ _ _
changed. The ensemble-averaged data show no anticipation By histograming the responses on the basis of the time-
of future changes in the applied field. averaged entropy production, we are able to_dlrectly compare
In Fig. 3 we confirm that the fluctuation theorem is valid the character of the response as a function of the time-

for this system. As expected, the FT is verified and confirmedVveraged entropy production. Figure 4 shows a histogram of
the time-averaged entropy production. As expected it is ap-

proximately Gaussian. The field is comparatively weak and

1.0 ' L TS
. the averaging time is short so the mean of the distribution,
o although positive, differs from zero by less than one standard
— @ deviation. We divide the area under the probability distribu-
zls 05 1 09| tion function for the dissipation function to the right of tiie
= E axis into bins. The area to the left of thiexis is divided into
s correspondingly symmetric bins to those on the right.
T % 0. | i By calculating the subensemble average of the dissipative
e £ flux of an individual bin, we can compare the second law
|°‘T satisfying subensemble-averaged response of a bin to the
- o right of they axis with its conjugate second-law-violating
e ] response to the left of thg axis. Figure 5 shows the
° subensemble-averaged response to the time-dependent exter-
° nal field for bins 1 and A of Fig. 4. The plot of the external
-1.0 : S - field is scaled by a factor of 5 for convenience. As expected

0.0

At

0.02

the second-law-satisfying response of bin (¢dhown as
circles as shown in Fig. 4 is related to the second-law-
violating response of bin*1 (shown as crossgby the trans-

FIG. 3. Atest of the time-dependent TFT for the color conduct-form"ﬂIon

ing system with a time-dependent external field that is odd under
the time-reversal mappin@ee Fig. 1 The data from the molecular
dynamics(MD) simulation are shown as circles, while the line pre-
dicted by the time-dependent TFT is shown as a solid black lineThe subensemble-averaged currents in conjugate bins are
The agreement is excellent. time-reversal maps of each other.

3 ==MT(3). )

026113-3



EMIL MITTAG AND DENIS J. EVANS PHYSICAL REVIEW E67, 026113 (2003

0.04 r . . 0.04 T T T
0.02 | m ﬂ | 0.02 ]
b %
() i @"‘%&& . () 1
X1 o
X 1o
0.0 ; OO B 0.0 _
X o
[ X o i
x ° B
“"’.ﬁ% ; .
-0.02 | 3 g Q B -0.02 b
% F %%x
%
- S b | ]
-0.04 L L I L -0.04 I 1 L
0.0 1.0 2.0 0.0 1.0 2.0

_ FIG_. 5. The sube_nsemble-averaged dissipative f_qu for bin_ 1 o_f FIG. 6. A plot of the subensemble-averaged dissipative flux
Fig. 3 is shown as circles. The response of the conjugate antlblr.] iShown in Fig. 4. The second-law-satisfying response is shown as
shown as crosses. The two response curves are related via the iMgrejas Here the response that violates the second law of thermo-

reversal mapping. The external fi_e_ld is shown as a solid line and foﬂynamics(crosse}s has been time-reversal mapped in order to fa-
purposes of the plot has been divided by a factor of 10. cilitate direct visual comparison of the two response curves. The

We note that the subensemble-averaged dissipative flux@greement between the two curves is very good, indicating that this
in conjugate bins both appear to respond to the change in tRystem with thl_s (_external field is r_ever5|ble. The external field,
external field before that change takes place. This anticipa20Wn @s a solid line, has been divided by a factor of 10 for pur-
tory response is due to a mixing of second-law-satisfying ang©ses of the plot.
second-law-violating characteristics within the subensemble
averages for the bin. The trajectories are binned in terms afjhere “bins” indicates that the summation is performed over
their time-integrated entropy production. The fact that theg| pins of the probability histogram ana, is the weight of
time-integrated entropy production is positive does not implyir, i \We know that the ensemble-averaged response for a

Lhofitfi?/;all times along a trajectory the entropy production ISsingle bin is the time-reversal mapping of the response in the

The anticausal character of the subensemble-averaged anu'gate b'_n’ "e'<,‘](t)>i: MT[U(t»i*]’ WhE!’EI* denotgs
sponse for bins 1 and*1seems to be significantly greater for (€ bin that is conjugate to bin The total antiresponse is
the bin with a negative time-averaged entropy production,
namely, bin ¥. Figure 6 shows a plot of the same data as in
Fig. 5. Here, however, the data for birf have been time-
reversal mapped so as to be more readily comparable to the L ..
data for the conjugate bin 1. As expected, there is excellent PRGN
agreement between the two curves. 02 N .

Figure 7 shows the subensemble-averaged dissipative flux Py ‘
for bins 1 through 7 of Fig. 4. The magnitude of the response /® - PR N 1
increases as the bin number increases. Bin 7 is therefore the S Y
one depicted with a dashed line with periodic solid circles. ) -
The data for all of the bins show considerable anticausal | s & //':)/j?’
character. In fact all curves except the first diedtained s S =1/
from bin 1) exhibit so much anticausal character that it is 02 - X
hard to say which curve is most anticausal in character. VL

The total ensemble-averaged respofise, the weighted L
response from all bingnust be causal in character and must
be second-law satisfying. As we have seen, Fig. 2 confirms 04 Lo ' : : !
this. The full ensemble-averaged dissipative flux shown in 0.0 1.0 2.0
Fig. 2 is the sum of the product of the subensemble-averaged
dissipative flux in each bin multiplied by the weight of that
bin. We can express this as t

0.4 T T T T T

bins FIG. 7. A plot of the subensemble-averaged responses in bins 1
(J(t)): 2 W-<J(t)>- 7) through 7 of Fig. 2. As the bin number increases, so does the mag-
i ! v nitude of the response.
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0.02 < (shown as circles As expected from Eq8), the agreement
of the two curves is very good. Numerical error is respon-
i sible for any difference between the curves.

0.01 . CONCLUSION

G) . We have shown that the fluctuation theorem is satisfied
for time-reversible, time-dependent systems. The fluctuation
. theorem is therefore not restricted to systems with constant
dissipative fields. This further enhances the breadth of appli-
1 cability of the theorem.

The standard proof of the transient FT assumes that tra-
jectories with conjugate values of the entropy production
(xA=x6A) are composed of pairs of trajectories and their
corresponding time-reversed antitrajectories. It has been ar-

0.02 , l , ‘ gued that, although the existence of trajectory-antitrajectory
0.0 10 2.0 pairs issufficientfor the existence of a fluctuation theorem, it
may not be anecessancondition. It is possible that Ed3)
t may be derived by means other than through the exploitation
of time-reversal symmetry. The present paper dispels this

FIG. 8. A plot of the antiresponse of the dissipative flux to the conjecture. Figure 5, 6, and 7 give convincing evidence that
external field(solid ling). The antiresponseécircles is the time-  sets of trajectories with conjugate values for the time-
reversal map of the ensemble-averaged responseMEJ(t)).  integrated entropy production(A+ 5A) are indeed for

Also shown (crossep are the results obtained from pairing the time-reversible systems such as those studied) haree-
weights of the response in each bin with the subensemble-averagegversal images of one another.

0.0

-0.01

response of the conjugate bin, E8). It is also possible that, although trajectory conjugacy may
be necessary and sufficient for the existence of a fluctuation
bins bins theorem, as a practical matter the shear complexity of a
MT(J(t)}]zZ WiMT[(J(t)>]=Z Wi(J(t))j« many-particle phase-space may be so gfeih many non-
: : contiguous islands in the initial phase space having the same
bins value for the time-averaged entropy producjitimt it may
:Z Wi« (J(1)). (8)  hot be possible to actually observe time-reversed responses

for subsets of trajectories with conjugate values for the time-

integrated entropy production. Again the present work dis-
In other words, the time-reversal mapping of the full pels this concern.
ensemble-averaged response is the sum of the product of the Finally, this work shows that, although the total ensemble-
weights for a bin and the subensemble-averaged current faveraged response obviously satisfies the second law and is
the conjugatebin. Figure 8 shows the results of the applica- completely causal in character, in general, the subensemble-
tion of Eqg. (8) (shown as crossgsand the time-reversal averaged currents, averaged over sets of trajectories with a
mapped normal response obtained by applying the timespecified, time-averaged value of the entropy production, ex-
reversal mapping to the data for the total forward responsaibit mixed causal and anticausal character.
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