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Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces
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Using the lattice Boltzmann method, we study fluid flow in a two-dimensional~2D! model of fracture
network of rock. Each fracture in a square network is represented by a 2D channel with rough, self-affine
internal surfaces. Various parameters of the model, such as the connectivity and the apertures of the fractures,
the roughness profile of their surface, as well as the Reynolds number for flow of the fluid, are systematically
varied in order to assess their effect on the effective permeability of the fracture network. The distribution of
the fractures’ apertures is approximated well by a log-normal distribution, which is consistent with experimen-
tal data. Due to the roughness of the fractures’ surfaces, and the finite size of the networks that can be used in
the simulations, the fracture network is anisotropic. The anisotropyincreasesas the connectivity of the network
decreases and approaches the percolation threshold. The effective permeabilityK of the network follows the
power lawK;^d&b, where^d& is the average aperture of the fractures in the network and the exponentb may
depend on the roughness exponent. A crossover from linear to nonlinear flow regime is obtained at a Reynolds
number Re;O(1), but the precise numerical value of the crossover Re depends on the roughness of the
fractures’ surfaces.

DOI: 10.1103/PhysRevE.67.026309 PACS number~s!: 47.55.Mh, 47.11.1j, 02.50.2r, 62.20.Mk
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I. INTRODUCTION

Flow and transport in systems with rough surfaces a
boundaries are relevant to a wide variety of scientific a
industrial problems. For example, natural porous media
rock contain a wide variety of pores and fractures with bro
distributions of sizes and shapes~for recent reviews see, fo
example, Sahimi@1#!. Transport of fluids in such porous me
dia involves not only flow through the microscopic pore
but also through the fractures which are typically mu
larger than the pores. Most rock masses contain complex
interconnected fracture networks, the presence of whic
critical to the economics of oil recovery from undergrou
reservoirs, generation of steam from geothermal reserv
for use in power plants, and the development of groundw
resources, as the fractures provide high permeability p
for fluid flow and transport processes.

Flow in unfractured porous media is now relatively we
understood@1#. One typically represents the pore space b
network of interconnected pores with distributed sizes a
connectivities, and utilizes either computer simulations,
analytical approximations, such as the effective-medium
proximation, or the renormalization group theory, in order
compute the effective properties of the network, such as
permeability and its electrical conductivity. However, t
same level of understanding has not yet been obtained
fluid flow through a network of fractures. In the early wo
on modeling of flow through fractures, the fractures we
typically represented by channels between two parallel
plates of lengthl for which the volumetric flow rateq is
given by

q5
wd3DP

12h l
, ~1!
1063-651X/2003/67~2!/026309~12!/$20.00 67 0263
d
d
d
d

,

nd
is

irs
er
hs

a
d
r

p-

ts

or

e
t

wherew is the width of the fracture andd its aperture,DP/ l
is the pressure gradient along fracture, andh is the viscosity
of the fluid. Thus according to this modelq depends on the
third power of d, and the effective permeabilityK of the
fracture varies asd2. The problem of fluid flow through a
fracture network is then reduced to one in a network of su
channels.

However, there is now ample experimental eviden
@2–6# that the internal surface of natural fractures in ro
masses is very rough, and that the roughness follows s
affine fractal statistics. More specifically, consider the int
nal surface of a fracture with a heighth(x,y) which is a
single-valued function. The surface is assumed not to h
any overhangs, and the coordinates~x,y! lie in the mean
plane of the fracture. Self-affinity of the rough surface im
plies that it exhibits scale invariance under rescaling exc
that, unlike self-similar structures, one has directio
dependent rescaling factors such that,x→lxx, y→lyy, and
h→lhh. Typically, isotropy in the mean plane of the fractu
can be assumed. As a result, one may assume thatlx5ly
5l andlh5lH, so that

h~x,y!5l2Hh~lx,ly!, ~2!

whereH is the roughness or Hurst exponent.
For fracture surface ofmaterialsa more or less universa

value of the roughness exponent,H.0.8, has been reporte
by several research groups~for a recent review see, for ex
ample, Sahimi@7#!. As for the internal surface of fracture o
rock, which is the subject of this paper, an estimateH
.0.85 was reported by Schmittbuhlet al. @4# for granitic
faults, very close to the universal value for fracture surfa
of materials. However, Cox and Wang@5#, Odling @5#, and
others@6# analyzed extensive data for a variety of rock join
and reported nonuniversal values of the roughness expo
©2003 The American Physical Society09-1
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in the range 0,H<0.85, and therefore in this paper we co
sider roughness exponents in the interval~0, 1!. There is also
considerable experimental evidence for deviations from
cubic law, Eq.~1!, q;d3, which have been attributed@8# to
the roughness of the internal surface of fracture. In nature
course, fractures possess self-affine surfaces over a ran
length scales limited by a lower and an upper cutoff leng
where the size of the fracture itself is the obvious up
cutoff, while the self-affinity may break down below som
characteristic microscopic length, such as the typical size
the grains that constitute the rock.

The roughness of the internal surface of fractures ha
practical implication in that, it makes it clear that the task
simulation of fluid flow in fractures with a realistic model fo
the roughness of their internal surface is very complex. Si
the problem of fluid flow in a single fracture with rough
self-affine internal surface cannot be solved analytically, o
must resort to numerical simulations. The numerical meth
that have been used so far are mostly of two types.~i! In one
approach the simulations are based on discretizing the
erning equations—the usual continuity and the Stok
equations—by a finite-difference~FD! or finite-element~FE!
method and solving the resulting set of equations@9#. How-
ever, if the effect of surface roughness of the fracture is to
taken into account, the FD or FE grid must be very refin
near the surface, which would then require prohibitive co
putations.~ii ! Alternatively, and much more efficiently, on
may use a lattice gas~LG! or lattice Boltzmann~LB! method
@10# which are ideally suited for simulation of fluid flow in
systems that have very irregular geometries. To our kno
edge, Gutfraind and Hansen@11# and Zhanget al. @12# were
the first to use a LG method to study fluid flow in a sing
fracture with self-affine internal surfaces. More recen
Drazer and Koplik@13# used the LB method to study flui
flow in a single fracture with self-affine internal surface. F
H close to 1, they also derived an analytical approximat
that relates the fracture’s effective permeability to its effe
tive aperture, the roughness exponentH, and other relevan
parameters. Madadiet al. @13# and Van Siclen@13# carried
out a similar study in which, in addition to fluid flow, con
duction in a single fracture~i.e., conduction in a single frac
ture saturated by a conducting fluid, such as brine! was also
studied, and various analytical approximations for the fl
and conduction properties were examined.

The fracture pattern in rock masses is, however, typic
very branched and appears as a highly interconnected
work @14#. In fact, analysis of Chelidze and Gueguen@15#
indicated that the three-dimensional~3D! fracture network of
rock masses may even be a fractal object with a fractal
mensionD f.2.5, and may have a structure close to that
the sample-spanning percolation cluster at the percola
thresholdpc @16,17# which also has a fractal dimension o
about 2.5. Therefore a complete understanding of fluid fl
in a fracture network requires, at the very least, a model w
two key ingradients:~i! Each fracture must have rough, se
affine internal surface, consistent with the experimental e
dence described above, and~ii ! such fractures must be inte
connected, forming a macroscopic network, similar
fracture networks that typically exist in rock masses. A
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though several models of fracture networks have been
posed in the past@18–24#, almost all of them are essentiall
equivalent to random resistor networks that have been u
in the past for modeling percolation and conduction in d
ordered materials, or fluid flow inunfracturedporous media.
A notable exception is the work of Adler and co-worke
@25,26#. In their original work@25#, the network was made o
plane polygonal fractures that were randomly distributed
space. The effective permeability of the system was th
computed by numerically solving the flow equations. In su
sequent work@26#, the roughness of the fracture surfaces w
taken into account and percolation and conduction proper
of the system were studied.

In this paper, we propose a different model of fractu
network of rock that contains the two key ingradients me
tioned above. In our model, each fracture possesses
affine internal surfaces. As the first step toward a full, 3
model, we use the LB method to study in this paper flu
flow in a square network of such fractures. We also vary
connectivity of the network in order to assess its effect on
flow properties. We have also studied dispersion and m
cible displacements in this model, the results of which w
be reported in a future paper. Work on a 3D model of int
connected 3D fractures is also in progress.

This paper is organized as follows. In the next section,
describe briefly the fracture network model, after which w
discuss the LB method that we employ to carry out the fl
flow simulations. We then present and discuss the res
The paper is summarized in the last section.

II. GENERATION OF THE FRACTURE NETWORK

Each fracture is initially represented by a 2D channel
tween two parallel flat surfaces. We then generate the rou
ness profile and superimpose it on top of the flat surfaces
generate the roughness profile, we use a 1D fractio
Brownian motion~FBM!. Briefly, the FBM is a stochastic
processBH(r ) with the properties that̂ BH(r )2BH(r0)&
50, and

^@BH~r !2BH~r0!#2&;ur2r0u2H, ~3!

where r5(x,y,z) and r05(x0 ,y0 ,z0) are two arbitrary
points in space, andH is the Hurst exponent. The
d-dimensional surfaces that are generated by the FBM h
exactly the same scaling property as in Eq.~2! with the same
Hurst or roughness exponent. ForH. 1

2 the FBM displays
persistence or positive correlations, i.e., a large or sm
height atr is likely to be followed by a similar trend atr
1Dr , whereas forH, 1

2 the FBM generates antipersisten
or negative correlations, i.e., a large or small height atr is
likely to be followed by its opposite atr1Dr . To generate
the 1D FBM profile, a fast Fourier transformation meth
and the power spectrum representation of the FBM are u
The power spectrumS(v) of a 1D FBM is given by

S~v!5
a0

v2H11 , ~4!
9-2
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wherev is the frequency, anda0 is a constant. Using this
method, we generate self-affine surfaces of root mean sq
thickness,. The local apertures vary with position within th
fractures. Each fracture is then assigned an effective ape
d, defined as the distance between the two mean surf
parallel to the flow direction:d5Ly22,, whereLy is the
linear size of the fracture transverse to the flow direction

All the fractures are assumed to have the same length
shown in Fig. 1, each fracture is characterized by a quan
hm , representing the maximum height of its rough surfa
The motivation for defining a maximum heighthm is to have
a single, well-defined parameter with which a fracture n
work, with a fixed roughness exponentH, can be character
ized. While, in practice, the fractures in a network may n
all have the same maximum heighthm , allowing hm to vary
among the fractures would generate a network that is d
cult to characterize with a physical parameter. On the ot
hand, varyinghm ~that is, translating the upper and low
surfaces normal to the mean plane! allows us to vary the
distance between the upper and lower surfaces and ob
fractures with a range of apertures. We have used sev
values ofhm in order to study the effect of the fracture
apertures on the macroscopic properties of the fracture
work. In particular, we have usedhm. 1

2 Ly , whereLy is the
linear extent of the fractures transverse to the flow directi
Such values ofhm result in overlap of the top and bottom
surfaces of a fracture, leading to its effective closure. T
this method generates, in a natural way, the topology o
percolation cluster for the fracture network.

The fractures that are generated in this way are then
ranged as a square network. As shown in Fig. 1, the inter
tions of the fractures are simple squares, obtained as
intersection of the channels without any surface roughn
The space in the fractures’ intersections are also discret

FIG. 1. A small portion of the model of the fracture netwo
with rough internal surfaces.hm indicates the maximum height o
the surface profile.
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finely for simulation of fluid flow~see below!. In addition to
generating fracture withhm. 1

2 Ly , which may result in the
closure of some fractures, we have also removed, as a sim
way of varying the connectivity of the fracture network,
randomly selected fraction of the fractures. That is, we g
erate a percolation network in which each intact bond i
fracture with internal self-affine surfaces. The motivation f
using this algorithm is to make the model consistent with
results of Chelidze and Gueguen@15#, who analyzed the to-
pology of rock fracture networks based solely on their co
nectivity ~without any regard for the aperture or flow pro
erties of the individual fractures!, and proposed that the
topology of such networks is similar to that of a samp
spanning percolation cluster at or very near the percola
threshold.

Various network sizes up to 1503150 have been used. W
have also generated up to 20 realizations of the netwo
and most of the results that are presented below represen
averages over all the realizations. To our knowledge, th
calculations represent some of the most intensive comp
tional modeling of fluid flow in a system with a nontrivia
geometry, using the LB method.

III. LATTICE BOLTZMANN SIMULATION

In the LB method, fictitious particles move on the site
a lattice which then collide with each other and scatter to
neighboring sites. Various collision rules have been propo
in the past@10#. We use the nine-velocity LB method@10# for
simulating fluid flow in the fracture network. The open spa
of each fracture, in which the fluid flows, is discretized in
a 32332 lattice, where the lattice spacing isDx. Such a
mesh proved to provide sufficient resolution for the comp
tations. For each lattice pointx we define, at timet, a distri-
bution functionf (x,va ,t), where the velocityva can take on
any of the nine values@10#. The distribution function
f a(x,t)5 f (x,va ,t) satisfies the discrete Boltzmann equ
tion:

f a~x1vaDt,t1Dt !2 f a~x,t !52
Dt

t
@ f a~x,t !2 f a

eq~x,t !#,

~5!

whereDt is the time step,t is a relaxation time, andf a
eq(x,t)

is the quasiequilibrium distribution function which, for low
Mach numbers, is given by@27,28#

f a
eq~x,t !5

1

9
r~x,t !F11

3

va
va•u1

9

2va
2 ~va•u!22

3

2
u2G

a51, . . . ,4, ~6!

f a
eq~x,t !5

1

36
r~x,t !F11

3

va
va•u1

9

2va
2 ~va•u!22

3

2
u2G

a55, . . . ,8, ~7!

f 9
eq~x,t !5

4

9
r~x,t !S 12

3

2
u2D . ~8!
9-3
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Here,ya5uvau, andr(x,t) andu(x,t) are, respectively, the
density and linear macroscopic velocity of the fluid, given

r~x,t !5 (
a51

9

f a
eq~x,t !5 (

a51

9

f a~x,t !, ~9!

r~x,t !u~x,t !5 (
a51

9

va f a
eq~x,t !5 (

a51

9

va f a~x,t !. ~10!

One can show@10#, using a Chapman-Enskog expansion a
the above equilibrium distribution function, that the contin
ity and Navier-Stokes equations are recovered at large ti
and length scales. We define the lattice spacingDx as the
unit of length and the time stepDt as the unit of time. The
viscosityh of the fluid is then given by,h5 1

6 (2t21)r and
the pressure isP5 1

3 r.
On the internal solid surface of the fractures the flow fie

must obey the no-slip boundary condition. The simplest w
of implementing this condition is the so-called bounce-ba
rule in which a particle incident on the surface reverses
direction. The bounce-back rule is straightforward to imp
ment, and is applicable to all complex solid surface geo
etries, but its accuracy, under certain conditions, might
limited. Inamuro, Yoshino, and Ogino@29# showed that the
bounce-back rule becomes inaccurate ift/Dt>3. Here, we
use t/Dt51, and therefore the error generated by t
bounce-back rule will be very small. Other rules for impl
menting the no-slip boundary condition, that are suppose
more accurate than the bounce-back rule, have also b
suggested@29#, but they are also more complex than t
bounce-back rule to implement on rough surfaces.

In our discussions below, the direction of the macrosco
flow is assumed to be from the left to right side of the squ
lattice ~the horizontal direction of the paper!, taken to be the
x direction. To begin the simulations, the boundary con
tions must be specified, and the initial distributionf a(x,0)
for the timet50 must be supplied. For this purpose, a co
stant pressure is applied to the network at its left side,
the fluid velocities at the entrance of all the horizontal fra
tures that are directly connected to this side are also assu
to be constant over their cross sections. As forf a(x,0), we
use the equilibrium distributionf a

eq. The system then evolve
according to Eqs.~5!–~8!. Since the pressure is given by,P
5 1

3 r, it might appear that the fluid is compressible. Ho
ever, the Mach number is only)31022, and therefore the
fluid is only very weakly compressible.

The fluid flow through the fracture network is characte
ized by an effective permeabilityKx . Since the fluid flow is
slow, we use Darcy’s law,

Q

A
52

Kx

h
“P, ~11!

whereQ is the total volumetric flow rate leaving the netwo
from its right side, andA is the cross section area throug
which Q passes. The volumetric flow rate can easily be co
puted. Since the pressure on the left side of the networ
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held fixed, we only need to determine an average pressur
the right side of the network. If the flow is slow enough, t
effective permeability would be independent of the flo
properties, and would depend only on the structural cha
teristics of the network, such as the roughness exponenH
and the maximum roughness heighthm . Thus if we define a
Reynolds number Re by

Re5
r~y!,

h
, ~12!

where^y& is the mean fluid velocity, and, is a characteristic
length which we take it to be the average aperture^d& of the
fracture network, then, for slow enough flows, the effecti
permeability is independent of Re. As described and d
cussed below, by varying the Reynolds number we also
vestigate the crossover between linear fluid flow, in wh
the effective permeability is independent of Re, and the n
linear regime.

Let us point out that, in the studies of fluid flow throug
consolidated or unconsolidated sandstones and similar
rous media, the average or typical grain size is used as
characteristic length scale,. However, for fluid flow through
the fracture networks that we study here, an average a
ture, or a similar quantity, appears to be the only natu
length scale for defining the Reynolds number. As such,
Reynolds numbers that we use in our study are typica
smaller than those that one obtains using the average g
size as the characteristic length scale.

IV. RESULTS AND DISCUSSION

We have carried out extensive LB simulations of flu
flow in the fracture network model described above. In wh
follows we describe and discuss the results.

A. Characterization of the fracture network

An important characteristic of any fracture network is t
statistical distributionF(d) of the fractures’ apertures. W
have constructed this distribution for two values of t
roughness exponentH and four values of the parameterhm ,
the maximum height of the fractures’ rough surfaces. Fig
2 presents the results forH50.1, while the results forH
50.8 are shown in Fig. 3. For a fixed distance between
upper and lower base~flat! surfaces of the fractures, sma
values ofhm do not have much effect on the apertures of t
fractures, and therefore one expects to have a narrow a
ture distribution; Figs. 2 and 3 confirm this expectation.
the maximum heighthm of the rough surfaces increases, t
effect of the roughness begins to emerge, andF(d) becomes
broader. Forhm518, the apertures vary over almost one o
der of magnitude. Moreover, as the roughness exponenH
increases, the aperture distribution becomes broader.
can be better understood by inspecting Fig. 4 which pres
the variances2 of the aperture distributions versusH and
hm . For smallhm , the variance is also very small, almo
independent of the roughness exponentH, implying that the
surface roughness has little effect on any property of inter
9-4
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FIG. 2. Distribution of the apertures on anL3L fracture network, whereL5150 sites, with the roughness exponentH50.1. Symbols
represent the numerical data, while the curves represent their numerical fits to Eq.~13!.
ne
e

s

th
w
n
s
to

su
is

an
gh

ate

een
e
de-
y
a-
d

nd
ub-
ical

rk,
ng
res’
rate
nd
are
.,
As the fractures become narrower-~i.e., ashm increases!, the
variance increases and the effect of the surface rough
begins to manifest itself in terms of the strong dependenc
s2 on the roughness exponentH.

Experiments by Gale@30# and others@14# have indicated
that the aperture distribution of rock fracture resemble
log-normal distribution:

F~d!5
1

A2p~ ln 10!sd
expH 2

@ ln~d/d0!#2

2s2 J , ~13!

whered0 is a parameter which is related to the mean of
distribution. We have fitted the aperture distributions sho
in Figs. 2 and 3 to Eq.~13!; the results are also shown i
these figures. As can be seen, for well-separated rough
faces, the log-normal distribution provides excellent fits
the data. However, when the upper and lower fracture
faces are close to each other, the fits are not as good. Th
particularly true when the roughness exponentH. 1

2 . More
experiments in which the distance between the upper
lower fracture surfaces can be controlled will shed more li
02630
ss
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on whether a log-normal aperture distribution is an accur
representation of narrow fractures~i.e., those with largehm).

We should point out that a Gaussian distribution has b
proposed@14# for describing the statistical properties of th
fractures’ internal surfaces. If this is the case, then, as
scribed by Adler and Thovert@14#, the mean aperture of an
subdomain of a fracture can be fully described by two p
rameters, namelysh

2, the variance of the surface height, an
^s&/sh , where^s& is the mean separation of the upper a
lower surfaces of a fracture. In addition, the size of any s
domain of the fracture has no influence on the statist
properties of the aperture distribution.

B. Effective permeability of the fracture network

Figure 5 presents a small portion of the fracture netwo
the magnitude of the local flow velocities, and the resulti
streamlines. It is clear that the roughness of the fractu
surfaces and the associated tortuosity of their gaps gene
complex flow patterns both at the fractures’ junctions a
inside the fractures themselves, especially in those that
aligned with the direction of the macroscopic flow field, i.e
9-5
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FIG. 3. Same as in Fig. 2, but with the roughness exponentH50.8.
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the x direction. In particular, the streamlines are no long
straight, as the fluid velocity sharply decreases inside
depressions and corners. While such a pattern of the stre
lines is expected, Fig. 5 is a clear demonstration of the c
plexities of such a pattern.

These features have an important implication for disp
sion processes, i.e., unsteady mixing of two miscible flu
@1# in a flow field. If we introduce into this network trace
particles of fluid 2 to be transported~advected! by the flow
field ~fluid 1!, then, as Fig. 5 also indicates, the tracers w
follow complex paths. In particular, the traditional assum
tion of complete mixing of the two fluids at the fracture
junctions @1#, according to which the tracers that are at t
junctions choose one of the fractures there with a probab
proportional to the flow rates in the fractures, is no long
valid ~see, for example, Mourzenkoet al. @31#!. Further work
on this issue is in progress; the results will be reported i
future paper@32#.

Figure 6 depicts the typical variations of the effective p
meability of one realization of the fracture network with th
time, for H50.5 andhm510. As this figure indicates, abou
1200 time steps are typically needed for reaching a ste
state. However, in percolation fracture networks, i.e., th
02630
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in which some of the fractures have been removed~see be-
low!, or those in which the maximum height of fracture
surfacehm. 1

2 Ly , the time to achieve the steady state i
creases, and is in fact very large near the percolation thr
old.

Figure 7 shows the dependence on the roughness e
nent H of the effective permeabilityKx of the fracture net-
works, averaged over many realizations, for a variety of fr
tures, ranging from narrow~large hm) to wide ~small hm).
Consistent with Figs. 2–4, the effective permeability
maximum and almost insensitive to the surface roughn
when the upper and lower surfaces of the fractures are
separated~i.e., whenhm is small!. However, as the fracture
become narrower~ashm increases!, the effective permeabil-
ity Kx decreases and, moreover, exhibits strong depend
on the surface roughness. The effective permeability
creases with increasing roughness exponentH, as largerH
generate surface profiles that are smoother than those
smallerH.

Traditionally, the effective permeability of a single frac
ture is written asK;dm, where m52 for fractures with
completely smooth surfaces. Zhang, Knackstedt, and Sa
9-6
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@12# showed that with a rough, self-affine surface, one m
have aH-dependentm that can vary anywhere from 2 to 6
We find that if we define an average aperture^d& for the
network, then the effective permeability of the fracture n
work, as a function of the average aperture, appears to
hibit a well-defined power-law behavior; this is shown
Fig. 8. Thus we may write

Kx;^d&b. ~14!

Although it appears that the exponentb depends on the
roughness exponentH, due to the limited range of̂d&, we
cannot at this point make any definitive statement about

FIG. 4. Variance of the apertures versus the roughness expo
H, whereh, s, n, and, show, respectively, the data forhm55,
10, 15, and 18.

FIG. 5. The streamlines and the magnitudes of the local fl
velocities in a small portion of the fracture network with the roug
ness exponentH50.5 andhm510.
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function b(H). We only observer that the effective perm
ability varies more rapidly witĥd& for smoother fractures
i.e., those with a larger roughness exponentH. In addition, if
extensive enough statistics are available, one may attem
correlate the exponentb with m, the exponent that describe
the power-law dependence of the effective permeability o
single fractures on its effective aperture. In that case,
effective permeability of a fracture network would be d
scribed solely in terms of the statistics of a single fractu
which would be very useful from a practical view point.

The possible power law~14! exhibited in Fig. 8 repre-

ent

-

FIG. 6. The effective permeabilityKx of the fracture network
versus the time, obtained with the roughness exponentH50.5 and
hm510.

FIG. 7. The effective permeabilityKx of the fracture network as
a function of the roughness exponentH for hm55 ~h!, 10 ~n!, 15
~s!, and 18~,!.
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sents, in the following sense, an important result for simu
tion of flow and transport in fractured rock. In order to car
out such simulations, one first develops@1#, based on the
available field-scale data, a fine-grid model for the rock, u
ally referred to as thegeological model, which typically con-
tains millions of grid points. However, use of the geologic
model in the study of flow and transport in rock entails p
hibitive computations involving millions of grid points an
thousands of time steps, and therefore the geological m
is first coarsened@33#, i.e., one partitions the grid structur
into relatively large cells that contain many grid points, a
then represents each cell by a supergrid point. An impor
issue is then assigning the effective properties of the su
grid points based on the distribution of property values
their associated cells and, in particular, the effective prop
ties of the fractures, a largely unsolved problem. Since e
cell may contain a distribution of fractures, Fig. 8 indicat
that the effective fracture permeability of the superg
points~i.e., the effective fracture permeability of the fractu
network inside their associated cells! is simply related to the
average of the distribution of the fractures’ apertures ins
their associated cells through a simple power law. Full
simulations can determine the exponentb(H) which can
then be used in coarsening of the geological model and si
lation of flow in fractured porous media.

C. Percolating fracture networks

As mentioned above, there is significant eviden
@1,14,15,23,24# indicating that the topology of fracture ne
work of many rock formations resembles that of a perco
tion cluster at or very near the percolation thresholdpc .
These studies analyzed the topology of the fracture netwo
regardless of the magnitude of the apertures of the individ
fractures, and concentrated only on the fractures’ interc

FIG. 8. Logarithmic plot of the effective permeabilityKx versus
the average aperture^d& of the network, as a function of the rough
ness exponentH, for H50.1 ~h!, 0.3 ~n!, 0.5 ~s!, and 0.8~,!.
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nectivities. Note that, as pointed out earlier, large values
the maximum heighthm of the fractures’ rough surface doe
close some of the fractures, hence producing what is ef
tively a percolation network. However, in addition, to su
networks, the results for which were described above,
also carried out extensive simulations of fluid flow in a fra
ture network in which only a randomly selected fractionp of
the fractures are intact~the rest are removed or closed!, re-
gardless of the apertures of the individual fractures. T
mimics to some extent the analysis of the field-scale data
rock fracture networks@1,14,15,23,24#. We note that, al-
though the structure of fracture network of rock may cont
some correlations, we ignore such complexities here. As
network loses its connectivity, the time at which the flo
field reaches steady state sharply increases, so that nepc
very long simulations are necessary to reach the steady s

Figure 9 presents the effective permeabilityKx(p) of the
network, normalized by its value when the network is fu
connected, for two values of the roughness exponentH. As
expected, the effective permeability decreases with decr
ing p. Two features of these results are note-worthy.~i! Un-
like the effective conductivity of resistor networks which
typically a concave function ofp, the effective permeability
of the fracture network is a convex function ofp, which is
presumably caused by the wide distribution of the apertu
~ii ! The difference between the effective permeabilities of
two networks with two different roughness exponents
creases as the percolation thresholdpc is approached, henc
indicating that nearpc the internal structure of the individua
fractures plays an increasingly important role. This is evid
in Fig. 10 where we show the contour plot of the magnitu
of local fluid velocities in the network atpc , after it has
reached an essentially steady state, indicating an extrem
complex flow pattern caused by the low connectivity of t

FIG. 9. The effective permeability versus the fractionp of the
intact fractures with the roughness exponentsH50.3 ~h! and 0.8
~s! andhm510.
9-8



LATTICE BOLTZMANN SIMULATION OF FLUID FLOW . . . PHYSICAL REVIEW E 67, 026309 ~2003!
FIG. 10. ~Color! The contour plot of the magnitude of the flow velocities atp50.5 with H50.3 andhm510.
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network and the rough, self-affine surface of the fractur
Since nearpc the backbone has a quasi-1D structure,
structure of the internal surface of the fractures domina
the flow pattern.

An interesting issue, at least from a theoretical view po
is whether the effective permeability of a fracture netwo
nearpc follows the type of power laws that one obtains f
the effective conductivity of percolation networks@16,17#. If
for p nearpc we write Kx;(p2pc)

e, then since the corre
lation lengthjp of percolation is given by,jp;(p2pc)

2n,
we obtainKx;jp

2e/n , while for the conductivityg of resistor
networks one hasg;jp

2m/n . In two dimensions, and with
smooth internal surfaces for the fractures, one hase5m
.1.3. We thus computed the corresponding exponent for
fracture network with rough, self-affine surfaces. To do
we used the standard finite-size scaling method@16,17# ac-
cording to which for a network of linear sizeL at the perco-
lation thresholdpc one has

Kx;L2e/n. ~15!

To speed up the simulations, we first identified the backb
of the network, i.e., its flow-carrying part, and then carry o
the LB simulations.

Typical results are shown in Fig. 11 forH50.3 andhm
510. Although we could varyL by only a factor of about 6,
Fig. 11 does indicate thate. 2

3 which, if confirmed by more
extensive simulations, is very different from the exponent
02630
s.
e
s

t,

e
,

e
t

r

the case in which the fractures have smooth surfaces.
also find that the exponente depends on the roughness e
ponent H, although, due to the very large computation
times that it required, we could not obtain accurate estima

FIG. 11. Dependence of the effective permeability on the lin
sizeL of the fracture network atp50.5 with H50.3 andhm510.
The dashed line represents the best fit of the data.
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of e for several other values ofH. It would also be of interes
to see whether the exponente also depends on the maximu
height hm of the fractures’ surface, at least when it is lar
enough that the fractures are very narrow and almost clo
More importantly, we find that forpc,p<1, the effective
permeabilityKx(p) follows Eq.~14! with thesameexponent
b(H) as for p51 @the prefactor implied by Eq.~14! does
depend onp#, indicating the universality ofb as far as the
fractures’ connectivity is concerned. The implication is th
Eq. ~14!, if confirmed by more extensive simulations, may
used for coarsening of fracture network of rock that ha
incomplete or random connectivities.

D. Finite-size effects and the anisotropy of fracture networks

A surprising feature that we discovered in the course
our simulations is that the fracture networks that we study
this work appear to be anisotropic. That is, the effective p
meabilities of the network along its two principal directio
are different, although for fully connected networks the a
isotropy is very small. This is an interesting, surprising, a
potentially important result. A useful measure of the anis
ropy of the network is the quantityA defined by

A5
uKx2Kyu
Kx1Ky

, ~16!

so that for isotropic networks, e.g., one with smooth inter
surfaces,A50. Figure 12 presents the anisotropyA versus
the roughness exponentH for three values ofhm . As can be
seen, forhm55, when the height of the rough surface
small compared to the total height of the fracture, the anis
ropy is very small. However, ashm increases and the fractur
surface becomes rougher, the anisotropy increases.

FIG. 12. AnisotropyA @see Eq.~16!# for hm55 ~h!, 10 ~s!,
and 15~n!. The solid circle represents the anisotropy for surfa
with random roughness.
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The question then is: What is the source of the anis
ropy? We believe that the anisotropy is caused by the w
known fact that the FBM is not a self-average stochas
process, implying that, if one utilizes the FBM for generati
two different ensembles of values of a property~for example,
the heights of the rough surfaces, as is done here!, starting
with two different seed numbers for the random number g
erations, then the statistical properties of the two ensem
will not become identical, unless their sizes are extrem
large @34#. Since in constructing the fracture network, th
surface roughness of each fracture is generated inde
dently of others, the implication is that, if we construct t
distributions of the fractures’ apertures in thex andy direc-
tions, the two distributions will not be identical, even if w
redistribute the fractures in the network, unless the size
the network becomes extremely large, and therefore the
fective permeability of the network in the two directions w
be different. Therefore, so long as the network size rema
finite ~even if it is large!, a small will persist which will
vanish only whenL, the linear size of the network, is ex
tremely large. Our simulations confirm this.

As a further test, we carried out a series of simulations
which the roughness of the fractures’s surfaces was ge
ated randomly, which corresponds to the limitH52 1

2 in Eq.
~4!, with the result beingA50. We then computed the an
isotropy of the network as a function ofp, the fraction of
uncut fractures in the network, with both random and se
affine rough surfaces. The results are shown in Fig.
While for the random roughness case the anisotropy rem
zero, it increasesfor the case of self-affine surfaces, cons
tent with our argument. It is also consistent with Fig. 10
that, aspc is approached, the flow field in the fracture ne
work with self-affine surfaces is increasingly dominated
the local roughness of the fractures’ surface, and there

s
FIG. 13. Dependence of the anisotropyA on p, the fraction of

the intact fractures, with the roughness exponentH50.1 ~h!, 0.3
~s!, 0.5 ~n!, and 0.8~,!. ~L! represents random roughness.
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LATTICE BOLTZMANN SIMULATION OF FLUID FLOW . . . PHYSICAL REVIEW E 67, 026309 ~2003!
the anisotropy caused by such surfaces increases.
We point out that the anisotropy of the fracture netwo

doesnot imply that one has direction-dependent expone
for power laws~14! and ~15!. Only the prefactors in Eqs
~14! and~15! depend on the direction along which the effe
tive permeability is measured. Our numerical computatio
confirm this.

E. Crossover to nonlinear flow

The last issue that we would like to take up in this pap
is the crossover from a linear flow regime, in which t
effective permeability of the network depends only on t
microstructure of the fracture network~and is independent o
the flow field! and a nonlinear one in which theapparent
permeability of the network, if one still insists on using E
~11!, would, in addition to the microstructure of the networ
depend on the characteristics of the flow field, and in parti
lar the Reynolds number.

We thus carried out a series of simulations in which
Reynolds number characterizing the flow field, and defin
by Eq. ~12!, was varied. Figure 14 presents the depende
of the effective permeability of the fracture network on t
Reynolds number for four values of the roughness expon
H andhm510. As can be seen, for each value ofH there is a
critical Reynolds number Rec such that for Re,Rec the flow
regime is linear, and hence the effective permeability is
dependent of Re, while for Re.Rec one has a crossover to
nonlinear flow regime in which the apparent permeability
the network strongly depends on the Reynolds number.
critical Reynolds number Rec for the crossover depends o
the roughness of the surface. For rougher surfaces~smaller

FIG. 14. Dependence of the effective permeabilityKx on the
Reynolds number and the roughness exponentH for H50.1 ~h!,
0.3 ~s!, 0.5 ~n!, and 0.8~,!.
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H! the value of Rec is also smaller; that is, very rough su
faces give rise to nonlinear flows even if the Reynolds
very small. The same phenomenon was observed in a si
fracture with rough, self-affine surfaces@11,12#. However,
we find that for a single fracture the critical Reynolds nu
ber Rec at which the crossover occurs islarger than the cor-
responding value for a network of fractures. Thus we susp
that the critical Reynolds number for the crossover in a
fracture network would be even smaller than that of 2D n
works considered here.

From a practical point of view, the results shown in F
14 are significant. Simulation of flow of oil, gas, or groun
water in fractured natural rock is usually carried out und
the assumption that the flow field is linear@1,14#. However,
the Reynolds number in such simulations are typically
large as 5, significantly above the critical Reynolds num
for the crossover to nonlinear flows.

V. SUMMARY

Using the lattice Boltzmann method, we have carried
extensive simulations of fluid flow in a 2D model of fractu
network of rock, in which each fracture possesses rou
self-affine surfaces. The aperture distribution generated
this model is accurately represented by a log-normal dis
bution, which is consistent with the experimental data. T
fracture network appears to be anisotropic, with the anis
ropy being due to self-affinity of the fractures’ surfaces, a
the finite sizes of the network. The effective permeabil
appears to follow a power law in the mean aperture of
fracture network. A crossover from a linear to a nonline
flow regime is obtained at a critical Reynolds number Rc
;O(1).

In future work, we will extend the present 2D model
3D, investigate the scaling and statistical properties of
effective permeabilities of 3D fracture networks in terms
the corresponding properties at the level of a single fractu
and study dispersion and miscible displacement processe
such 3D fracture networks, phenomena that are importan
enhanced recovery of oil from underground reservoirs, a
to groundwater pollution.
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