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Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces
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Using the lattice Boltzmann method, we study fluid flow in a two-dimensig¢2Bl) model of fracture
network of rock. Each fracture in a square network is represented by a 2D channel with rough, self-affine
internal surfaces. Various parameters of the model, such as the connectivity and the apertures of the fractures,
the roughness profile of their surface, as well as the Reynolds number for flow of the fluid, are systematically
varied in order to assess their effect on the effective permeability of the fracture network. The distribution of
the fractures’ apertures is approximated well by a log-normal distribution, which is consistent with experimen-
tal data. Due to the roughness of the fractures’ surfaces, and the finite size of the networks that can be used in
the simulations, the fracture network is anisotropic. The anisotigpgasess the connectivity of the network
decreases and approaches the percolation threshold. The effective perm&abflittye network follows the
power lawK ~( 8)#, where(d) is the average aperture of the fractures in the network and the expémeay
depend on the roughness exponent. A crossover from linear to nonlinear flow regime is obtained at a Reynolds
number Re-O(1), but the precise numerical value of the crossover Re depends on the roughness of the
fractures’ surfaces.
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[. INTRODUCTION wherew is the width of the fracture andits aperture AP/I
is the pressure gradient along fracture, anid the viscosity
Flow and transport in systems with rough surfaces andaf the fluid. Thus according to this modeldepends on the
boundaries are relevant to a wide variety of scientific andhird power of §, and the effective permeabiliti of the
industrial problems. For example, natural porous media anftacture varies as$’>. The problem of fluid flow through a
rock contain a wide variety of pores and fractures with broadracture network is then reduced to one in a network of such
distributions of sizes and shapéer recent reviews see, for channels.
example, Sahimjil]). Transport of fluids in such porous me-  However, there is now ample experimental evidence
dia involves not only flow through the microscopic pores,[2—6] that the internal surface of natural fractures in rock
but also through the fractures which are typically muchmasses is very rough, and that the roughness follows self-
larger than the pores. Most rock masses contain complex araffine fractal statistics. More specifically, consider the inter-
interconnected fracture networks, the presence of which isal surface of a fracture with a heigh{x,y) which is a
critical to the economics of oil recovery from undergroundsingle-valued function. The surface is assumed not to have
reservoirs, generation of steam from geothermal reservoirany overhangs, and the coordinatesy) lie in the mean
for use in power plants, and the development of groundwateplane of the fracture. Self-affinity of the rough surface im-
resources, as the fractures provide high permeability pathglies that it exhibits scale invariance under rescaling except
for fluid flow and transport processes. that, unlike self-similar structures, one has direction-
Flow in unfractured porous media is now relatively well dependent rescaling factors such that; \,x, y—\,y, and
understood1]. One typically represents the pore space by ah—\,h. Typically, isotropy in the mean plane of the fracture
network of interconnected pores with distributed sizes and¢an be assumed. As a result, one may assumentfan,
connectivities, and utilizes either computer simulations, or=\ and\,=\", so that
analytical approximations, such as the effective-medium ap-
proximation, or the renormalization group theory, in order to h(x,y)=X""h(Ax,\y), 2
compute the effective properties of the network, such as its
permeability and its electrical conductivity. However, the whereH is the roughness or Hurst exponent.
same level of understanding has not yet been obtained for For fracture surface ahaterialsa more or less universal
fluid flow through a network of fractures. In the early work value of the roughness exponehit=0.8, has been reported
on modeling of flow through fractures, the fractures wereby several research grougi®r a recent review see, for ex-
typically represented by channels between two parallel flaample, Sahim[7]). As for the internal surface of fracture of
plates of lengthl for which the volumetric flow ratey is rock, which is the subject of this paper, an estiméte
given by =0.85 was reported by Schmittbubt al. [4] for granitic
faults, very close to the universal value for fracture surface
of materials. However, Cox and War§], Odling [5], and
_ wo°AP (1) others[6] analyzed extensive data for a variety of rock joints
q 129 ° and reported nonuniversal values of the roughness exponent
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in the range 8<H=0.85, and therefore in this paper we con- though several models of fracture networks have been pro-
sider roughness exponents in the inter@@gll). There is also  posed in the pagtl8—24, almost all of them are essentially
considerable experimental evidence for deviations from th&quivalent to random resistor networks that have been used
cubic law, Eq.(1), g~ 6%, which have been attributd@] to in the past for modeling percolation and conduction in dis-
the roughness of the internal surface of fracture. In nature, gprdered materials, or fluid flow innfracturedporous media.
course, fractures possess self-affine surfaces over a range/fnotable exception is the work of Adler and co-workers
length scales limited by a lower and an upper cutoff length[25,28l. In their original work[25], the network was made of
where the size of the fracture itself is the obvious uppePlane polygonal fractures that were randomly distributed in
cutoff, while the self-affinity may break down below some SPace. The effective permeability of the system was then

characteristic microscopic length, such as the typical size ofomputed by numerically solving the flow equations. In sub-
the grains that constitute the rock. sequent work26], the roughness of the fracture surfaces was

The roughness of the internal surface of fractures has taken into account and p.ercolation and conduction properties
practical implication in that, it makes it clear that the task of©f the system were studied. ,
simulation of fluid flow in fractures with a realistic model for N this paper, we propose a different model of fracture
the roughness of their internal surface is very complex. Sinc8€twork of rock that contains the two key ingradients men-
the problem of fluid flow in a single fracture with rough, fioned above. In our model, each fracture possesses self-
self-affine internal surface cannot be solved analytically, onéffine intemnal surfaces. As the first step toward a full, 3D
must resort to numerical simulations. The numerical method§'0del, we use the LB method to study in this paper fluid
that have been used so far are mostly of two ty(i¢$n one flow in a square network of such fractures. We also vary the
approach the simulations are based on discretizing the go@onnectivity .of the network in order to assess |ts_effect on the
erning equations—the usual continuity and the StokesflOW properties. We have also studied dispersion and mis-
equations—Dby a finite-differend&D) or finite-elementFE) cible dlsplac_ements in this model, the results of whlch will
method and solving the resulting set of equatif@is How- be reported in a future paper. Work on a 3D model of inter-
ever, if the effect of surface roughness of the fracture is to b&onnected 3D fractures is also in progress.

taken into account, the FD or FE grid must be very refined TNis paper is organized as follows. In the next section, we
near the surface, which would then require prohibitive comdescribe briefly the fracture network model, after which we

putations.(ii) Alternatively, and much more efficiently, one discuss the LB method that we employ to carry out the fluid
may use a lattice ga&G) or lattice Boltzmanr(LB) method flow S|mula_t|ons. We _then_ present and Q|scuss the results.
[10] which are ideally suited for simulation of fluid flow in 1he paper is summarized in the last section.
systems that have very irregular geometries. To our knowl-
edge, Gutfraind and Hans¢hl] and Zhanget al.[12] were Il. GENERATION OF THE FRACTURE NETWORK
the first to use a LG method to study fluid flow in a single
fracture with self-affine internal surfaces. More recently, Each fracture is initially represented by a 2D channel be-
Drazer and Koplik13] used the LB method to study fluid tween two parallel flat surfaces. We then generate the rough-
flow in a single fracture with self-affine internal surface. Forness profile and superimpose it on top of the flat surfaces. To
H close to 1, they also derived an analytical approximatiorgenerate the roughness profile, we use a 1D fractional
that relates the fracture’s effective permeability to its effec-Brownian motion(FBM). Briefly, the FBM is a stochastic
tive aperture, the roughness exponehtand other relevant processBy(r) with the properties tha{By(r) —By(ro))
parameters. Madadit al. [13] and Van Sicle{13] carried =0, and
out a similar study in which, in addition to fluid flow, con-
duction in a single fracturé.e., conduction in a single frac- ([Bu(r)—By(ro) 13 ~r—rq|?H, (3)
ture saturated by a conducting fluid, such as brimas also
studied, and various analytical approximations for the flo
and conduction properties were examined.

The fracture pattern in rock masses is, however, typicall

Wwhere r=(x,y,z) and ro=(Xg,Y9,29) are two arbitrary
oints in space, andH is the Hurst exponent. The
d-dimensional surfaces that are generated by the FBM have

el ; - :
; . xactly the same scaling property as in E2).with the same
WOT" [14]. In fact, analys_ls of _Chehdze and Guegueib] Hurst or roughness exponent. Adr>3 the FBM displays
indicated that the three-dimensiortaD) fracture network of persistence or positive correlations, i.e., a large or small

rock masses may even be a fractal object with a fractal d;height atr is likely to be followed by a similar trend at
mensionD¢=2.5, and may have a structure close to that of |\ "\ nereas foH<1 the FBM generates antipersistence
the sample-spanning percolation cluster at the percolatioBr négative correlatiorzls ie., alarge or small height i
thresholdp, [16,17] which also has a fractal dimension of likely to be followed by ’its. c.>'pposite at+Ar. To generate

about 2.5. Therefore a complete understanding of fluid row[he 1D FBM profile, a fast Fourier transformation method

ina fract_ure ne_twork_ requires, at the very least, a model Wm}md the power spectrum representation of the FBM are used.
two key ingradients(i) Each fracture must have rough, self- The power spectrur(w) of a 1D FBM is given b
affine internal surface, consistent with the experimental evi- y

dence described above, aid such fractures must be inter-
connected, forming a macroscopic network, similar to S(w)= ag @
fracture networks that typically exist in rock masses. Al- 0t
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finely for simulation of fluid flow(see below In addition to
generating fracture witt,>3L,, which may result in the
closure of some fractures, we have also removed, as a simple
way of varying the connectivity of the fracture network, a
randomly selected fraction of the fractures. That is, we gen-
erate a percolation network in which each intact bond is a
fracture with internal self-affine surfaces. The motivation for
using this algorithm is to make the model consistent with the
results of Chelidze and Guegugtb], who analyzed the to-
pology of rock fracture networks based solely on their con-
nectivity (without any regard for the aperture or flow prop-
erties of the individual fracturgsand proposed that the
topology of such networks is similar to that of a sample-
spanning percolation cluster at or very near the percolation
threshold.

Various network sizes up to 150150 have been used. We
have also generated up to 20 realizations of the networks,
and most of the results that are presented below represent the
averages over all the realizations. To our knowledge, these
calculations represent some of the most intensive computa-
tional modeling of fluid flow in a system with a nontrivial

FIG. 1. A small portion of the model of the fracture network geometry, using the LB method.
with rough internal surfaces,, indicates the maximum height of
the surface profile.

IIl. LATTICE BOLTZMANN SIMULATION

where w is the frequency, and, is a constant. Using this In the LB method, fictitious particles move on the site of

method, we generate self-affine surfaces of root mean squa?elattice which then collide with each other and scatter to the
thickness?. The local apertures vary with position within the N€ighboring sites. Various collision rules have been proposed
fractures. Each fracture is then assigned an effective apertuPéthe pgs(lO]. we use the nine-velocity LB methtlO] for
5, defined as the distance between the two mean surfac§imulating fluid flow in the fracture network. The open space
parallel to the flow directions=L,—2¢, whereL, is the © each fracture, in which the fluid flows, is discretized into
y il y . . .

linear size of the fracture transverse to the flow direction. & 3232 lattice, where the _Ia_1tt|ce spacing Isc. Such a

All the fractures are assumed to have the same length, AZ€Sh proved to provide sufficient resolution for the compu-
shown in Fig. 1, each fracture is characterized by a quantit “9“5% For_ea;:h lattice porl]DItwehdefmle, attime, a dllsm-
h,,, representing the maximum height of its rough surface’ utlonfunhctlon_ (X.Vq 'It)' where the vg_oc!';)wa_canfta € on
The motivation for defining a maximum heighy, is to have ?ny O_tf € niné va ”?.S[lo]h T e distri utllon unction
a single, well-defined parameter with which a fracture net-_a()f’t)* (X.Vq.t) satisfies the discrete Boltzmann equa-
work, with a fixed roughness exponett can be character- tion:
ized. While, in practice, the fractures in a network may not At
all have the same maximum heidhy,, allowing h,, to vary o (x+V At AL —f (1) =— —[f(x,t)— f¥x,1)],
among the fractures would generate a network that is diffi- T
cult to characterize with a physical parameter. On the other ()

hand, varyingh,, (that is, translating the upper and lower . . . L
surfaces normaﬁ to the mean plaralows us to vary the whereAt is the time stepy is a relaxation time, anéf{(x,t)

distance between the upper and lower surfaces and obtal® the quasiequil_ibriL_Jm distribution function which, for low
fractures with a range of apertures. We have used severdfach numbers, is given bj27,28
values ofh,, in order to study the effect of the fractures’

apertures on the macroscopic properties of the fracture net- fe9Yx,t)= }p(X )1+ iv U+ iz(v u)2— §u2
work. In particular, we have uséd,>3L,, whereL, is the “ 9 v ¢ 20, ¢ 2
linear extent of the fractures transverse to the flow direction. a1 4 ©

Such values oh,, result in overlap of the top and bottom
surfaces of a fracture, leading to its effective closure. Thus
this method generates, in a natural way, the topology of a
percolation cluster for the fracture network.

The fractures that are generated in this way are then ar-
ranged as a square network. As shown in Fig. 1, the intersec-
tions of the fractures are simple squares, obtained as the \
intersection of the channels without any surface roughness. Feqx,t) = ﬂ (x t)( 1 3u2) )
The space in the fractures’ intersections are also discretized 9™ g P\ % 2 )

1
i%x,t):%p(x,t) 2

1 3 9 ) 3 )
+—V,_ U+ —(V,-U)"— =Uu
v o zvi( @ )

a

a=5,...,8, (7)
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Here,v,=|v,|, andp(x,t) andu(x,t) are, respectively, the held fixed, we only need to determine an average pressure on
density and linear macroscopic velocity of the fluid, given bythe right side of the network. If the flow is slow enough, the
effective permeability would be independent of the flow
9 9 properties, and would depend only on the structural charac-
p(x,t)= >, oY x,t) = > %), (9) teristics of the network, such as the roughness expoHent
a=1 a=1 and the maximum roughness heigiat. Thus if we define a
Reynolds number Re by
9 9
p(XOUCGD = 2 VIS X =2 v, fa(xt). (10 p(v)€
a=1 a=1 Re= e (12

One can showW10], using a Chapman-Enskog expansion and

the above equilibrium distribution function, that the continu-where(v) is the mean fluid velocity, and is a characteristic

ity and Navier-Stokes equations are recovered at large timdsngth which we take it to be the average apertideof the

and length scales. We define the lattice spadingas the fracture network, then, for slow enough flows, the effective
unit of length and the time stefpt as the unit of time. The permeability is independent of Re. As described and dis-
viscosity 5 of the fluid is then given byp=%(27—1)p and  cussed below, by varying the Reynolds number we also in-
the pressure i®=3p. vestigate the crossover between linear fluid flow, in which

On the internal solid surface of the fractures the flow fieldthe effective permeability is independent of Re, and the non-
must obey the no-slip boundary condition. The simplest wayinear regime.
of implementing this condition is the so-called bounce-back Let us point out that, in the studies of fluid flow through
rule in which a particle incident on the surface reverses itsonsolidated or unconsolidated sandstones and similar po-
direction. The bounce-back rule is straightforward to imple-rous media, the average or typical grain size is used as the
ment, and is applicable to all complex solid surface geom<characteristic length scate However, for fluid flow through
etries, but its accuracy, under certain conditions, might béhe fracture networks that we study here, an average aper-
limited. Inamuro, Yoshino, and Ogin@9] showed that the ture, or a similar quantity, appears to be the only natural
bounce-back rule becomes inaccurate/iht=3. Here, we length scale for defining the Reynolds number. As such, the
use 7/At=1, and therefore the error generated by theReynolds numbers that we use in our study are typically
bounce-back rule will be very small. Other rules for imple- smaller than those that one obtains using the average grain
menting the no-slip boundary condition, that are supposedlgize as the characteristic length scale.
more accurate than the bounce-back rule, have also been
suggested 29], but they are also more complex than the IV. RESULTS AND DISCUSSION
bounce-back rule to implement on rough surfaces. _ ) ) ) )

In our discussions below, the direction of the macroscopic We have carried out extensive LB simulations of fluid
flow is assumed to be from the left to right side of the squardlow in the fracture network model described above. In what
lattice (the horizontal direction of the papetaken to be the follows we describe and discuss the results.

x direction. To begin the simulations, the boundary condi-

tions must be specified, and the initial distributibg(x,0) A. Characterization of the fracture network

for the t|met=Q must .be supplied. For this purpose, a con- - o, important characteristic of any fracture network is the
stant pressure is applied to the network at its left side, angt

X i . atistical distributionF() of the fractures’ apertures. We
the fluid velocities at the entrance of all the horizontal frac-h((?ve constructed this distribution for two values of the

tures that are directly connected to this side are also assume Lighness exponeht and four values of the paramete

to behconstzilnbt 'overthe'lg crozgqsc_e;;:mns. ASﬁ%D(’O)’ V\I'e the maximum height of the fractures’ rough surfaces. Figure
use the equilibrium distributioR,". The system then evolves , presents the results fafl =0.1, while the results foH

according to Eqst5)—(8). Since the pressure is given I, _q g are shown in Fig. 3. For a fixed distance between the

=3p, it might appear that the fluid s compressible. HOW-,,her and lower basélat) surfaces of the fractures, small
ever, the Mach number is on3x10~%, and therefore the 5,65 ofh | do not have much effect on the apertures of the
fluid is only very weakly compressible. _ fractures, and therefore one expects to have a narrow aper-
~ The fluid flow through the fracture network is character-yre gistribution; Figs. 2 and 3 confirm this expectation. As
ized by an effective permeabilitit, . Since the fluid flow is 1o maximum heighh,, of the rough surfaces increases, the
slow, we use Darcy’s law, effect of the roughness begins to emerge, Bd) becomes
broader. Foh,,= 18, the apertures vary over almost one or-
Q Ky der of magnitude. Moreover, as the roughness expohent
K:_VVP’ (D) increases, the aperture distribution becomes broader. This
can be better understood by inspecting Fig. 4 which presents
whereQ is the total volumetric flow rate leaving the network the variances? of the aperture distributions versits and
from its right side, andA is the cross section area through h,,. For smallh,,, the variance is also very small, almost
which Q passes. The volumetric flow rate can easily be comindependent of the roughness exponidnimplying that the
puted. Since the pressure on the left side of the network isurface roughness has little effect on any property of interest.
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FIG. 2. Distribution of the apertures on &arx L fracture network, wheré =150 sites, with the roughness exponeht 0.1. Symbols
represent the numerical data, while the curves represent their numerical fits (b3Eq.

As the fractures become narrow@e., ash,, increaseg the  on whether a log-normal aperture distribution is an accurate
variance increases and the effect of the surface roughnesspresentation of narrow fracturése., those with largé,,).
begins to manifest itself in terms of the strong dependence of We should point out that a Gaussian distribution has been
o2 on the roughness exponet proposed 14| for describing the statistical properties of the
Experiments by Galg30] and other§14] have indicated fractures’ internal surfaces. If this is the case, then, as de-
that the aperture distribution of rock fracture resembles a&cribed by Adler and Thoveft4], the mean aperture of any
log-normal distribution: subdomain of a fracture can be fully described by two pa-
rameters, namelyﬁ, the variance of the surface height, and
(s}l ay,, where(s) is the mean separation of the upper and
] , (130  lower surfaces of a fracture. In addition, the size of any sub-
domain of the fracture has no influence on the statistical
properties of the aperture distribution.

where &, is a parameter which is related to the mean of the
distribution. We have fitted the aperture distributions shown
in Figs. 2 and 3 to Eq(13); the results are also shown in
these figures. As can be seen, for well-separated rough sur- Figure 5 presents a small portion of the fracture network,
faces, the log-normal distribution provides excellent fits tothe magnitude of the local flow velocities, and the resulting
the data. However, when the upper and lower fracture surstreamlines. It is clear that the roughness of the fractures’
faces are close to each other, the fits are not as good. This ssirfaces and the associated tortuosity of their gaps generate
particularly true when the roughness exponnt 3. More  complex flow patterns both at the fractures’ junctions and
experiments in which the distance between the upper anihside the fractures themselves, especially in those that are
lower fracture surfaces can be controlled will shed more lightaligned with the direction of the macroscopic flow field, i.e.,

_[In(3/8)?

1
= ex
L2m(n10)cs p{ 20°

F(4)

B. Effective permeability of the fracture network
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FIG. 3. Same as in Fig. 2, but with the roughness expohien0.8.

the x direction. In particular, the streamlines are no longerin which some of the fractures have been remote=zk be-
straight, as the fluid velocity sharply decreases inside théow), or those in which the maximum height of fractures’
depressions and corners. While such a pattern of the strearsurfaceh,,>3L,, the time to achieve the steady state in-
lines is expected, Fig. 5 is a clear demonstration of the comereases, and is in fact very large near the percolation thresh-
plexities of such a pattern. old.

These features have an important implication for disper-  Figure 7 shows the dependence on the roughness expo-
sion processes, i.e., unsteady mixing of two miscible fluidsyentH of the effective permeabilit, of the fracture net-
[1]'in a flow field. If we introduce into this network tracer \yqrks averaged over many realizations, for a variety of frac-
partmle; of fluid 2 to be_transportg{dqvecteaj by the flow . tures, ranging from narrowlarge h,,) to wide (small hy,).
field (fluid 1), then, as Fig. 5 glso indicates, _t_he tracers W'”Consistent with Figs. 2—4, the effective permeability is
follow complex paths. In particular, the traditional assuMp- . aximum and almost insensitive to the surface roughness

tion of complete mixing of the two fluids at the fractures’
. ) . : when the upper and lower surfaces of the fractures are well
junctions[1], according to which the tracers that are at the . )

eparatedi.e., whenh,, is smal). However, as the fractures

junctions choose one of the fractures there with a probabilit% hei he effecti bil
proportional to the flow rates in the fractures, is no longer?8COMe narroweg@sh, increases the effective permeabil-

valid (see, for example, Mourzenla al.[31]). Further work ity K, decreases and, moreover, exhibit_s strong depg_nde_nce
on this issue is in progress; the results will be reported in &N the surface roughness. The effective permeability in-
future papef32]. creases with increasing roughness expon#nas largerH
Figure 6 depicts the typical variations of the effective per-generate surface profiles that are smoother than those with
meability of one realization of the fracture network with the smallerH.
time, for H=0.5 andh,,= 10. As this figure indicates, about  Traditionally, the effective permeability of a single frac-
1200 time steps are typically needed for reaching a steadyre is written asK~ 8™, wherem=2 for fractures with
state. However, in percolation fracture networks, i.e., thoseompletely smooth surfaces. Zhang, Knackstedt, and Sahimi
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FIG. 6. The effective permeabilitiK, of the fracture network

FIG. 4. Variance of the apertures versus the roughness exponeligrsus the time, obtained with the roughness expoHen0.5 and
H, whered, O, A, andV show, respectively, the data fby,=5, hm=
10, 15, and 18. . .
function B(H). We only observer that the effective perme-
[12] showed that with a rough, self-affine surface, one may_ablllty varies more rapidly with() for smoother fractures,

have aH-dependentn that can vary anywhere from 2 to 6. €., thqse with a Iarger r(_)ughness e_xporidntn addition, if

We find that if we define an average apertde for the extensive enough statistics are available, one may attempt to
network, then the effective permeability of the fracture net_correlate the exponedt with m, the exponent that des_c_nbes
work, as a function of the average aperture, appears to e}he power-law dependence of the effective permeability of a

hibit a well-defined power-law behavior; this is shown in single_ fractures on its effective aperture. In that case, the
Fig. 8. Thus we may write ' effective permeability of a fracture network would be de-

scribed solely in terms of the statistics of a single fracture,
which would be very useful from a practical view point.

Ky~ ()" (14 The possible power lawl4) exhibited in Fig. 8 repre-
Although it appears that the exponeftdepends on the 700 T T T T
roughness exponeid, due to the limited range ofs), we
cannot at this point make any definitive statement about the 600 L - a ]
a o]
0.035 500 -
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400 a 7
0.025 A N “
300 -, .
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©
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0.015 © v
o
- 100 o . M 1
v
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0 0.2 0.4 0.6 0.8 1
H

FIG. 5. The streamlines and the magnitudes of the local flow FIG. 7. The effective permeabilit, of the fracture network as
velocities in a small portion of the fracture network with the rough- a function of the roughness exponétfor h,,=5 (CJ), 10 (A), 15
ness exponerti =0.5 andh,,= 10. (O), and 18(V).
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FIG. 8. Logarithmic plot of the effective permeabilik; versus

the average apertuf@) of the network, as a function of the rough- . t Flth' 9.t The ef_“i(;‘]c:ir:/e pernr:eability vers;: trz)egframctprm(fj tg%
ness exponertt, for H=0.1 (), 0.3(A), 0.5(0), and 0.8(V). '(%?;n(rj":lc u_rig wi e roughness exponeits 0.3 (L) and 0.
m_ .

sents, in the following sense, an important result for simula-
tion of flow and transport in fractured rock. In order to carry Nectivities. Note that, as pointed out earlier, large values of
out such simulations, one first develoffs, based on the the maximum heighhy, of the fractures’ rough surface does
available field-scale data, a fine-grid model for the rock, usuclose some of the fractures, hence producing what is effec-
ally referred to as thgeological modelwhich typically con-  tively a percolation network. However, in addition, to such
tains millions of grid points. However, use of the geological networks, the results for which were described above, we
model in the Study of flow and transport in rock entails pro_also carried out extensive simulations of fluid flow in a frac-
hibitive computations involving millions of grid points and ture network in which only a randomly selected fractof
thousands of time steps, and therefore the geological modéhe fractures are intagthe rest are removed or closede-
is first coarsened33], i.e., one partitions the grid structure gardless of the apertures of the individual fractures. This
into re|ative|y |arge cells that contain many g”d points, andmimiCS to some extent the analysis of the field-scale data for
then represents each cell by a supergrid point. An importarfiock fracture networkq1,14,15,23,2f We note that, al-
issue is then assigning the effective properties of the supefhough the structure of fracture network of rock may contain
grid points based on the distribution of property values insome correlations, we ignore such complexities here. As the
their associated cells and, in particular, the effective properd€twork loses its connectivity, the time at which the flow
ties of the fractures, a largely unsolved problem. Since eacfield reaches steady state sharply increases, so thatpgear
cell may contain a distribution of fractures, Fig. 8 indicatesvery long simulations are necessary to reach the steady state.
that the effective fracture permeability of the supergrid Figure 9 presents the effective permeability(p) of the
points(i.e., the effective fracture permeability of the fracture network, normalized by its value when the network is fully
network inside their associated cglis simply related to the connected, for two values of the roughness expohems
average of the distribution of the fractures’ apertures insidéxpected, the effective permeability decreases with decreas-
their associated cells through a simple power law. Full 3Ding p. Two features of these results are note-worthyUn-
simulations can determine the expong#tH) which can like the effective conductivity of resistor networks which is
then be used in coarsening of the geological model and simdypically a concave function gb, the effective permeability
lation of flow in fractured porous media. of the fracture network is a convex function pf which is
presumably caused by the wide distribution of the apertures.
(ii) The difference between the effective permeabilities of the
two networks with two different roughness exponents in-
As mentioned above, there is significant evidencecreases as the percolation threshplds approached, hence
[1,14,15,23,2%indicating that the topology of fracture net- indicating that neap, the internal structure of the individual
work of many rock formations resembles that of a percolafractures plays an increasingly important role. This is evident
tion cluster at or very near the percolation threshpld in Fig. 10 where we show the contour plot of the magnitude
These studies analyzed the topology of the fracture networksf local fluid velocities in the network gp., after it has
regardless of the magnitude of the apertures of the individualeached an essentially steady state, indicating an extremely
fractures, and concentrated only on the fractures’ interconeomplex flow pattern caused by the low connectivity of the

C. Percolating fracture networks
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FIG. 10. (Color) The contour plot of the magnitude of the flow velocitiespat 0.5 with H= 0.3 andh,,= 10.

network and the rough, self-affine surface of the fracturesthe case in which the fractures have smooth surfaces. We
Since neam. the backbone has a quasi-1D structure, thealso find that the exponemtdepends on the roughness ex-

structure of the internal surface of the fractures dominateponentH, although, due to the very large computational

the flow pattern. times that it required, we could not obtain accurate estimates

An interesting issue, at least from a theoretical view point,

is whether the effective permeability of a fracture network 1
nearp, follows the type of power laws that one obtains for L !
the effective conductivity of percolation networkss,17. If
for p nearp, we write K,~(p—p.)¢, then since the corre-
lation length§, of percolation is given by,~(p—pc) 7, !
we obtainK,~ 556’”, while for the conductivityg of resistor
networks one hag~§;’*"’. In two dimensions, and with
smooth internal surfaces for the fractures, one basu
=1.3. We thus computed the corresponding exponent for the
fracture network with rough, self-affine surfaces. To do so, @
we used the standard finite-size scaling metht@l17 ac- N
cording to which for a network of linear sideat the perco- o
lation thresholdp, one has

K,~L"®", (15

To speed up the simulations, we first identified the backbone

of the network, i.e., its flow-carrying part, and then carry out 0.1

the LB simulations. 10 100
Typical results are shown in Fig. 11 fét=0.3 andh,, L

=10. Although we could vary. by only a factor of about 6, FIG. 11. Dependence of the effective permeability on the linear

Fig. 11 does indicate tha=$% which, if confirmed by more sizeL of the fracture network ap=0.5 with H=0.3 andh,,= 10.

extensive simulations, is very different from the exponent forThe dashed line represents the best fit of the data.
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FIG. 12. AnisotropyA [see Eq.(16)] for hp=5 (0J), 10 (O), FIG. 13. Dependence of the anisotropyon p, the fraction of
and 15(A). The solid circle represents the anisotropy for surfacesne intact fractures, with the roughness exportént0.1 (CJ), 0.3

with random roughness. (0), 0.5(A), and 0.8(V). () represents random roughness.

of e for several other values &f. It would also be of interest The question then is: What is the source of the anisot-

to see whether the expon'emalso depends on the maximum ropy? We believe that the anisotropy is caused by the well-
heighth,, of the fractures’ surface, at least when it is large nown fact that the FBM is not a self-average Stochastic
enough that the fractures are very narrow and almost closegmceSS’ implying that, if one utilizes the FBM for generating

More imp(_)rtantly, we find that f°p°.< p=<1, the effective two different ensembles of values of a propefty example,
permeabilityK,(p) follows Eq.(14) with the sameexponent o peights of the rough surfaces, as is done )hatarting
B(H) as forp=1 [the prefactor implied by Eq(14) does i two different seed numbers for the random number gen-

depend ?rp], indic_:a_ting the universality O.B as far as the erations, then the statistical properties of the two ensembles
fractures’ connectivity is concerned. The implication is that, .1 nhot become identical, unless their sizes are extremely

Eq. (14), if confirmed by more extensive simulations, may be|5rqe [34]. Since in constructing the fracture network, the

used for coarsening of fracture network of rock that haveg (tace roughness of each fracture is generated indepen-

incomplete or random connectivities. dently of others, the implication is that, if we construct the
distributions of the fractures’ apertures in tkeandy direc-

D. Finite-size effects and the anisotropy of fracture networks tjons, the two distributions will not be identical, even if we

A surprising feature that we discovered in the course ofedistribute the fractures in the network, unless the size of

our simulations is that the fracture networks that we study irfhe network becomes extremely large, and therefore the ef-

this work appear to be anisotropic. That is, the effective perfective permeability of the network in the two directions will

meabilities of the network along its two principal directions Pe different. Therefore, so long as the network size remains

are different, although for fully connected networks the an-finite (even if it is large, a small will persist which will

isotropy is very small. This is an interesting, surprising, andvanish only wherL, the linear size of the network, is ex-

potentially important result. A useful measure of the anisotiremely large. Our simulations confirm this. o
ropy of the network is the quantit defined by As a further test, we carried out a series of simulations in

which the roughness of the fractures’s surfaces was gener-
ated randomly, which corresponds to the litdi& — 3 in Eq.

(4), with the result beingA=0. We then computed the an-
isotropy of the network as a function @f the fraction of
uncut fractures in the network, with both random and self-
so that for isotropic networks, e.g., one with smooth internakffine rough surfaces. The results are shown in Fig. 13.
surfaces A=0. Figure 12 presents the anisotropyversus  While for the random roughness case the anisotropy remains
the roughness exponeHtfor three values oh,,. As can be  zero, itincreasedfor the case of self-affine surfaces, consis-
seen, forh,,=5, when the height of the rough surface is tent with our argument. It is also consistent with Fig. 10 in
small compared to the total height of the fracture, the anisotthat, asp, is approached, the flow field in the fracture net-
ropy is very small. However, &%, increases and the fracture work with self-affine surfaces is increasingly dominated by
surface becomes rougher, the anisotropy increases. the local roughness of the fractures’ surface, and therefore

_ |Kx_ Ky|

T KK 10
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07 T T T T T T H) the value of Rgis also smaller; that is, very rough sur-
faces give rise to nonlinear flows even if the Reynolds is
06 - N very small. The same phenomenon was observed in a single
2 fracture with rough, self-affine surfac¢$1,12. However,
we find that for a single fracture the critical Reynolds num-
05 ber Re at which the crossover occurslarger than the cor-
responding value for a network of fractures. Thus we suspect
04 b that the critical Reynolds number for the crossover in a 3D
o fracture network would be even smaller than that of 2D net-
N works considered here.
03 | From a practical point of view, the results shown in Fig.
14 are significant. Simulation of flow of oil, gas, or ground-
o2 b v water in fractured natural rock is usually carried out under
v o & , the assumption that the flow field is lingldr,14]. However,
) the Reynolds number in such simulations are typically as
01 % ] large as 5, significantly above the critical Reynolds number
o Do for the crossover to nonlinear flows.
0 1 1 1 1 1 1 1 1 L

1 15 2 25 3 385 4 45 5 65 6
Re

V. SUMMARY

Using the lattice Boltzmann method, we have carried out
extensive simulations of fluid flow in a 2D model of fracture
network of rock, in which each fracture possesses rough,
self-affine surfaces. The aperture distribution generated by
) i this model is accurately represented by a log-normal distri-
the anisotropy caused by such surfaces increases. bution, which is consistent with the experimental data. The

We point out that the anisotropy of the fracture networkSfacture network appears to be anisotropic, with the anisot-
doesnot imply that one has direction-dependent exponentgopy peing due to self-affinity of the fractures’ surfaces, and
for power laws(14) and (15). Only the prefactors in EGS. the finite sizes of the network. The effective permeability
(14) and(15) depend on the direction along which the effec- appears to follow a power law in the mean aperture of the
tive permeability is measured. Our numerical computationgracture network. A crossover from a linear to a nonlinear
confirm this. flow regime is obtained at a critical Reynolds number, Re

~0(1).
E. Crossover to nonlinear flow In future work, we will extend the present 2D model to

The last issue that we would like to take up in this paper3D' ir]vestigate th_e_ _scaling and statistical prope_rties of the
is the crossover from a linear flow regime, in which the effective permeabilities of 3D fracture networks in terms of

effective permeability of the network depends only on thethe correspc.)nding. propertie; a.t the I_eveI of a single fracture_,

microstructure of the fracture netwotand is independent of and study dispersion and miscible displacement processes in
the flow field and a nonlinear one in which thepparent such 3D fracture networl_<s, phenomena that are |mp(_)rtant to
permeability of the network, if one still insists on using Eq. enhanced recovery o_f oil from underground reservoirs, and

(11), would, in addition to the microstructure of the network, {0 groundwater pollution.

depend on the characteristics of the flow field, and in particu-
lar the Reynolds number.

We thus carried out a series of simulations in which the
Reynolds number characterizing the flow field, and defined Partial support of this work by the Petroleum Research
by Eq.(12), was varied. Figure 14 presents the dependencEund, administered by the American Chemical Society, is
of the effective permeability of the fracture network on the gratefully acknowledged. This work was also supported by
Reynolds number for four values of the roughness exponerilinistry of Science, Research and Technology of Iran, as
H andh,,=10. As can be seen, for each valuetbthere isa  well as grants DFG/VE 163/4-1(project “Forschergruppe:
critical Reynolds number Resuch that for Re&Re. the flow  Modellierung kohaiver Reibungsmaterialien als Kontinuum
regime is linear, and hence the effective permeability is in-oder Diskontium, Teilprojeck VJ and SFB 381(project
dependent of Re, while for ReRe. one has a crossover to a “Charakterizierung des schagungsverlauf in Faserver-
nonlinear flow regime in which the apparent permeability ofbundwerkstoffen mittels zerstjrungsfreier "Rmg, Teil-
the network strongly depends on the Reynolds number. Thprojeck C7”). M.M. is grateful to Hans Herrmann and Stefan
critical Reynolds number Rdor the crossover depends on Luding for warm hospitality at the University of Stuttgart,
the roughness of the surface. For rougher surféasemller where most of this work was carried out.

FIG. 14. Dependence of the effective permeability on the
Reynolds number and the roughness expomemor H=0.1 (),
0.3(0), 0.5(A), and 0.8(V).
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