Gauge transformation between retarded and multipolar gauges

A M STEWART

Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia

Email: andrew.stewart@anu.edu.au

MS received 24 July 2000; revised 9 January 2001

Abstract. The gauge function, expressed in terms of the sources, required for a gauge transformation between the retarded electromagnetic gauge and the three-vector version of the multipolar gauge is obtained.

Keywords. Gauge; transformation; retarded; multipolar.

PACS Nos 03.50.De; 11.15.q

The retarded solutions to the inhomogeneous wave equations for the electromagnetic scalar and vector potentials $\phi(\mathbf{r},t)$ and $\mathbf{A}(\mathbf{r},t)$

$$\partial^{2} \mathbf{A} / \partial (ct)^{2} - \nabla^{2} \mathbf{A} + \nabla (\nabla \cdot \mathbf{A} + c^{-2} \partial \phi / \partial t) = \mu_{0} \mathbf{J}$$
 (1)

and

$$\nabla^2 \phi + (\partial/\partial t) \nabla \cdot \mathbf{A} = -\rho/\varepsilon_0 \tag{2}$$

are

$$\phi_1(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}',t')\delta\{t'-t+|\mathbf{r}-\mathbf{r}'|/c\}d\mathbf{r}'dt'}{|\mathbf{r}-\mathbf{r}'|}$$
(3)

and

$$\mathbf{A}_{\mathrm{I}}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}',t')\delta\{t'-t+|\mathbf{r}-\mathbf{r}'|/c\}d\mathbf{r}'dt'}{|\mathbf{r}-\mathbf{r}'|},\tag{4}$$

where δ is the Dirac delta function and c is the velocity of light. They describe the potentials at position ${\bf r}$ and time t arising from charge and current densities ρ and ${\bf J}$ at position ${\bf r}'$ and time t' [1, 2] and satisfy the Lorentz gauge condition $\nabla \cdot {\bf A}_1 + c^{-2}\partial \phi_1/\partial t = 0$. The electromagnetic fields ${\bf E}({\bf r},t)$ and ${\bf B}({\bf r},t)$ are obtained from the potentials by the relations

$$\mathbf{B} = \nabla \times \mathbf{A}$$
 and $\mathbf{E} = -\nabla \phi - \partial \mathbf{A} / \partial t$, (5)

where ∇ is the spatial gradient operator with respect to \mathbf{r} . In consequence, if the potentials are transformed to

$$\mathbf{A} \to \mathbf{A}' = \mathbf{A} + \nabla \chi \quad \text{and} \quad \phi \to \phi' = \phi - \partial \chi / \partial t,$$
 (6)

the electromagnetic fields are unchanged. The gauge function $\chi(\mathbf{r},t)$ is required to satisfy the condition $\{(\partial/\partial i)(\partial/\partial j) - (\partial/\partial j)(\partial/\partial i)\}\chi = 0$, where i and j are any pair of the coordinates x,y,z and t. The principle of gauge invariance requires all observable quantities, such as the fields \mathbf{E} and \mathbf{B} , to be independent of the gauge function [3,4].

In the retarded gauge above, the potentials, denoted by the subscripts 1 are described in terms of the charge and current source densities ρ and \mathbf{J} at the retarded time $t'=t-|\mathbf{r}-\mathbf{r}'|/c$. Another gauge that is of interest in the theory of magnetism [5,6] and in semiclassical electrodynamics which describes the interaction of atoms with radiation [6] is the three-vector version of the multipolar gauge [5,7–9]. In this gauge the potentials, denoted by the subscript 2, are described in terms of the instantaneous but non-local values of the fields \mathbf{E} and \mathbf{B}

$$\phi_2(\mathbf{r},t) = -\mathbf{r} \cdot \int_0^1 \mathbf{E}(u\mathbf{r},t) du$$
 and $\mathbf{A}_2(\mathbf{r},t) = -\mathbf{r} \times \int_0^1 \mathbf{B}(u\mathbf{r},t) u du$. (7)

The multipolar gauge satisfies the condition $\mathbf{r} \cdot \mathbf{A}_2(\mathbf{r},t) = 0$ and is obtained from a gauge function that is essentially given by $-\int_0^1 \mathbf{r} \cdot \mathbf{A}(u\mathbf{r},t) du$ [9].

It is the purpose of this note to obtain the gauge function $\chi(\mathbf{r},t)$ that effects a gauge

It is the purpose of this note to obtain the gauge function $\chi(\mathbf{r},t)$ that effects a gauge transformation between these two important gauges by means of the relations $\mathbf{A}_2 = \mathbf{A}_1 + \nabla \chi$ and $\phi_2 = \phi_1 - \partial \chi / \partial t$. The procedure that is used is to get $\mathbf{B}_1(\mathbf{r},t)$ and $\mathbf{E}_1(\mathbf{r},t)$ from eqs (3)–(5) and substitute them in eq. (7) to get $\mathbf{A}_2(\mathbf{r},t)$ and $\phi_2(\mathbf{r},t)$. A gauge function $\chi(\mathbf{r},t)$ is then found that relates the two sets of potentials.

First we get B_1 by taking the curl of A_1 with respect to r. Noting that J is a function of r' but not of r' this gives

$$\mathbf{B}_{1}(u\mathbf{r},t) = -\frac{\mu_{0}}{4\pi} \int d\mathbf{r}' dt' \mathbf{J}(\mathbf{r}',t') \times \nabla_{ur} h(u\mathbf{r}), \tag{8}$$

where $h(u\mathbf{r}) = \delta(t' - t + |u\mathbf{r} - \mathbf{r}'|)/c/|u\mathbf{r} - \mathbf{r}'|$ and the gradient is taken with respect to the parameter $u\mathbf{r}$. Hence

$$\mathbf{A}_{2}(\mathbf{r},t) = \frac{\mu_{0}}{4\pi} \int d\mathbf{r}' dt' \int_{0}^{1} u du \, \mathbf{r} \times \{ \mathbf{J}(\mathbf{r}',t') \times \nabla_{u\mathbf{r}} h(u\mathbf{r}) \}. \tag{9}$$

The triple vector product may be expanded as

$$\mathbf{r} \times \{\mathbf{J}(\mathbf{r}', t') \times \nabla_{ur} h(u\mathbf{r})\} = \mathbf{J}(\mathbf{r}', t') \{\mathbf{r} \cdot \nabla_{ur} h(u\mathbf{r})\}$$

$$-\{\mathbf{J}(\mathbf{r}', t') \cdot \mathbf{r}\} \nabla_{ur} h(u\mathbf{r})$$
(10)

and this gives rise to two terms in (9). When the relations between derivatives $u\nabla_{u\mathbf{r}}h(u\mathbf{r}) = \nabla h(u\mathbf{r})$ and $(\mathbf{r}\cdot\nabla)h(u\mathbf{r}) = u(\partial h(u\mathbf{r})/\partial u)$ derived in the appendix are used, where h is any function of $u\mathbf{r}$, the first term in the integrand becomes $u(\partial h/\partial u) = (\partial/\partial u)(uh) - h$ and so (9) is

Retarded and multipolar gauges

$$\mathbf{A}_{2}(\mathbf{r},t) = \frac{\mu_{0}}{4\pi} \int d\mathbf{r}' dt' \mathbf{J}(\mathbf{r}',t')$$

$$\times \int_{0}^{1} du \{ [\partial/\partial u \{ uh(u\mathbf{r}) \} - h(u\mathbf{r})] - \cdot \mathbf{r} \nabla_{\mathbf{r}} h(u\mathbf{r}) \}, \tag{11}$$

where in the last term the vector dot product is between J and r. The integral of u over the perfect differential can be carried out to give

$$\mathbf{A}_{2}(\mathbf{r},t) = \frac{\mu_{0}}{4\pi} \int d\mathbf{r}' dt' \mathbf{J}(\mathbf{r}',t') \left[h(\mathbf{r}) - \int_{0}^{1} du \{ h(u\mathbf{r}) + \cdot \mathbf{r} \nabla_{\mathbf{r}} h(u\mathbf{r}) \} \right].$$
(12)

The first term can be recognized to be $A_1(\mathbf{r}, t)$ of eq. (4) so,

$$\mathbf{A}_{2}(\mathbf{r},t) - \mathbf{A}_{1}(\mathbf{r},t) = -\frac{\mu_{0}}{4\pi} \int d\mathbf{r}' dt' \mathbf{J}(\mathbf{r}',t') \int_{0}^{1} du \{h(u\mathbf{r}) + \cdot \mathbf{r} \nabla_{\mathbf{r}} h(u\mathbf{r})\}.$$
(13)

Next we calculate $\phi_2(\mathbf{r}, t)$. From eq. (5), E is the sum of two parts, denoted by the superscripts a and b, which, from eq. (7), give rise to two terms in the potential. The first, involving the gradient, is

$$\phi_2^a(\mathbf{r},t) = \int_0^1 du(\mathbf{r} \cdot \nabla_{u\mathbf{r}}) \phi_1(u\mathbf{r},t), \tag{14}$$

so using the results in the appendix, $\mathbf{r} \cdot \nabla_{u\mathbf{r}} h(\mathbf{q}) = \partial h/\partial u$ we obtain $\phi_2^a(\mathbf{r},t) - \phi_1(\mathbf{r},t) = -\phi_1(\mathbf{0},t)$. The other term is $\phi_2^b(\mathbf{r},t) = \mathbf{r} \cdot \int_0^1 (\partial/\partial t) \mathbf{A}_1(u\mathbf{r},t) du$ and leads to

$$\phi_{2}(\mathbf{r},t) - \phi_{1}(\mathbf{r},t) = -\phi_{1}(\mathbf{0},t) - \frac{\mu_{0}}{4\pi} \int d\mathbf{r}' dt' \{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t')\}$$

$$\times \int_{0}^{1} du \frac{\delta' \{t' - t + |u\mathbf{r} - \mathbf{r}'|/c\}}{|u\mathbf{r} - \mathbf{r}'|}, \tag{15}$$

where δ' is the derivative of the delta function with respect to its argument. Consider now the scalar function $\chi(\mathbf{r},t)=f(\mathbf{r},t)+g(t)$ where

$$f(\mathbf{r},t) = -\frac{\mu_0}{4\pi} \int d\mathbf{r}' dt' \{ \mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t') \} \int_0^1 du h(u\mathbf{r})$$
 (16)

and

$$g(t) = -\frac{1}{4\pi\varepsilon_0} \int d\mathbf{r}' dt' \rho(\mathbf{r}', t') \theta\{t' - t + |\mathbf{r}'|/c\}/|\mathbf{r}'|$$
(17)

and $\theta(x)$ is the function which is 1 for x > 0 and zero otherwise; its derivative is the delta function. The gradient of χ , which is the gradient of f, is obtained by noting that $\nabla \{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t')h(u\mathbf{r})\} = h(u\mathbf{r})\nabla \{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t')\} + \{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t')\}\nabla h(u\mathbf{r}) = h(u\mathbf{r})\mathbf{J}(\mathbf{r}',t') + \{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t')\}\nabla h(u\mathbf{r}) \text{ since } \nabla \{\mathbf{J}(\mathbf{r}',t') \cdot \mathbf{r}\} = \mathbf{J}(\mathbf{r}',t'). \text{ Hence}$

$$\nabla \chi = -\frac{\mu_0}{4\pi} \int d\mathbf{r}' dt' \mathbf{J}(\mathbf{r}', t') \int_0^1 du \{h(u\mathbf{r}) + \cdot \mathbf{r} \nabla h(u\mathbf{r})\}.$$
 (18)

The time derivative $\partial \chi/\partial t$ has two terms one coming from f and one from g.

$$\partial f/\partial t = \frac{\mu_0}{4\pi} \int d\mathbf{r}' dt' \{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}', t')\} \int_0^1 du \frac{\delta' \{t' - t + |u\mathbf{r} - \mathbf{r}'|/c\}}{|u\mathbf{r} - \mathbf{r}'|}$$
(19)

and

$$\partial g/\partial t = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{r}' dt' \rho(\mathbf{r}', t') \delta\{t' - t + |\mathbf{r}'|/c\}/|\mathbf{r}'|$$
$$= \phi_1(\mathbf{0}, t). \tag{20}$$

By comparing eqs (18) and (20) with (13) and (15) it can be seen that the gauge function $\chi = f + g$ is indeed able to transform the retarded gauge into the three-vector version of the multipolar gauge.

The integral over u in eq. (16) can be simplified. Using the standard relation

$$\delta[f(u)] = \sum_{i} \delta[u - u^{i}] / |\partial f / \partial u|_{u^{i}}, \tag{21}$$

where $f[u^i] = 0$, in this case with $f[u] = t' - t + |u\mathbf{r} - \mathbf{r}'|/c$, we obtain the roots u^i from $(u\mathbf{r} - \mathbf{r}')^2 - c^2(t - t')^2 = 0$ to be

$$u^{+-} = \frac{r'}{r} \left[\cos \varphi \pm \sqrt{c^2 (t - t')^2 / r'^2 - \sin^2 \varphi} \right], \tag{22}$$

where r and r' are the lengths of the vectors ${\bf r}$ and ${\bf r}'$ and φ is the angle between them. From the relation $c^2(t-t')^2=u^2r^2+r'^2-2urr'\cos\varphi$ it follows that $c^2(t-t')^2-r'^2\sin^2\varphi=(ur-r'\cos\varphi)^2\geq 0$ so the square root is always real. Next, it is straightforward to show that

$$\frac{\partial f}{\partial u} = \frac{\mathbf{r} \cdot (u\mathbf{r} - \mathbf{r}')}{c|u\mathbf{r} - \mathbf{r}'|} \tag{23}$$

and that

$$\mathbf{r} \cdot (u\mathbf{r} - \mathbf{r}')|_{u^{\pm}} = \pm \sqrt{c^2(t - t')^2 - r'^2 \sin^2 \varphi}$$
, (24)

SO

$$\int_0^1 du h(u\mathbf{r}) = \frac{c}{r\sqrt{c^2(t-t')^2 - r'^2 \sin^2 \varphi}} \int_0^1 du [\delta(u-u^+) + \delta(u-u^-)],$$
(25)

as the $|u\mathbf{r} - \mathbf{r}'|$ terms in the numerator and denominator cancel and where u^+ and u^- are given by eq. (22) so

$$f(\mathbf{r},t) = -\frac{\mu_0}{4\pi} \int \frac{d\mathbf{r}' dt' c\{\mathbf{r} \cdot \mathbf{J}(\mathbf{r}',t')\}}{r\sqrt{c^2(t-t')^2 - r'^2 \sin^2 \varphi}} \int_0^1 du [\delta(u-u^+) + \delta(u-u^-)].$$
(26)

In carrying out the integrations over \mathbf{r}' and t' in (26) the integral over u gives plus one when u^+ and u^- calculated from eq. (22) lie between zero and unity and zero otherwise.

Retarded and multipolar gauges

Appendix

We show that $\mathbf{r} \cdot \nabla h(\mathbf{q}) = u(\partial h/\partial u)$ where ∇ is the gradient operator with respect to \mathbf{r} , $\mathbf{q} = u\mathbf{r}$ and h is any function of the vector \mathbf{q} . Noting that $\partial q^i/\partial x^j = u\delta_{ij}$ and $\partial q^i/\partial u = x^i$ we find that $\partial h/\partial x^i = u(\partial h/\partial q^i)$ so $\nabla h(u\mathbf{r}) = u\nabla_{u\mathbf{r}}h(u\mathbf{r})$. Also $\partial h/\partial u = \Sigma_i x^i(\partial h/\partial q^i)$ so $u\partial h(\mathbf{q})/\partial u = \Sigma_i ux^i\partial h/\partial q^i$. Next, $\mathbf{r} \cdot \nabla h(\mathbf{q}) = \Sigma_i x^i\partial/\partial x^i h(\mathbf{q}) = \Sigma_i ux^i\partial h/\partial q^i$ so it follows that $\mathbf{r} \cdot \nabla h(\mathbf{q}) = u(\partial h/\partial u)$ and $\mathbf{r} \cdot \nabla_{u\mathbf{r}}h(\mathbf{q}) = \partial h/\partial u$.

References

- [1] J D Jackson, Classical electrodynamics (Wiley, New York, 1975)
- [2] W K H Panofsky and M Philips, Classical electricity and magnetism (Addison-Wesley, Cambridge, Mass., 1955)
- [3] A M Stewart, J. Phys. A29, 1411 (1996)
- [4] A M Stewart, Aust. J. Phys. 50, 1061 (1997)
- [5] A M Stewart, J. Phys. A32, 6091 (1999)
- [6] A M Stewart, Aust. J. Phys. 53, 613 (2000)
- [7] J G Valatin, Proc. R. Soc. London A222, 93 (1954)
- [8] R G Woolley, J. Phys. B6, L97 (1973)
- [9] D H Kobe, Am. J. Phys. 50, 128 (1982)