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Abstract: We generate experimentally different types of two-dimensional
Bloch waves of a square photonic lattice by employing the phase imprinting
technique. We probe the local dispersion of the Bloch modes in the photonic
lattice by analyzing the linear diffraction of beams associated with the high-
symmetry points of the Brillouin zone, and also distinguish the regimes
of normal, anomalous, and anisotropic diffraction through observations of
nonlinear self-action effects.

© 2006 Optical Society of America

OCIS codes: (190.4420) Nonlinear optics, transverse effects in; (190.5940) Self-action effects;
(050.1950) Diffraction gratings.

References and links
1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crystals: Molding the Flow of Light(Princeton

University Press, Princeton, 1995).
2. P. S. Russell, “Bloch wave analysis of dispersion and pulse-propagation in pure distributed feedback structures,”

J. Mod. Opt.38,1599–1619 (1991).
3. P. St. J. Russell, T. A. Birks, and F. D. Lloyd Lucas, “Photonic Bloch waves and photonic band gaps,” inConfined

Electrons and Photons, E. Burstein and C. Weisbuch, eds., (1995), pp. 585–633.
4. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.

85,1863–1866 (2000).
5. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Anomalous refraction and diffraction in discrete

optical systems,” Phys. Rev. Lett.88,093901–4 (2002).
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1. Introduction

The study of the wave propagation in optical periodic structures such as photonic crystals [1]
has attracted growing interest in recent years. The periodic photonic structures exhibit unique
properties allowing to manipulate the flow of light at the wavelength scale and create the basis
for novel types of integrated optical devices. In such periodic dielectric structures, the prop-
agation of light is governed by the familiar Bloch theorem due to the interplay between the
light and the surrounding periodic structure [2], that introduces the spatially extended linear
waves, the so-called Bloch waves, as the eigenmodes of the corresponding periodic potential.
Thus, the properties of electromagnetic waves in periodic structures are fully determined by the
Bloch wave dispersion which, for the spatial beam propagation, represents the relation between
the longitudinal and transverse components of the Bloch wavevector. Since any finite beam can
be expressed as a superposition of such Bloch waves [3], the beam propagation in any periodic
structure is also determined from the local dispersion. In particular, the beam propagation di-
rection is defined by the normal to the dispersion curve while the beam spreading is governed
by the curvature of this curve.

The study of Bloch waves and their temporal and spatial dispersion provides a key infor-
mation about overall properties of any periodic structure. In particular, depending on the local
dispersion and a local value of the wave vector, an optical beam (or pulse) experience normal,
anomalous or even vanishing diffraction (or dispersion) [3, 4, 5]. Experimentally, the Bloch-
wave character of electromagnetic waves in photonic crystal waveguides has been deduced
indirectly by detecting the out-of-plane leakage of light [6], by investigating the evanescent
field coupling between a tapered optical fiber and a photonic crystal waveguide [7], and more
directly by local near-field probing of the intensity distribution in a waveguide [8]. The full
band structure of a photonic crystal waveguide has been recovered very recently by employing
a near-field optical microscope and probing both the local phase and amplitude of the light
propagating through a single-line defect waveguide [9, 10].

The Bloch-wave dynamics in periodic structures becomes even more dramatic in the pres-
ence of the nonlinear medium response that may lead to the formation of strongly localized
structures, discrete and gap solitons [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The prop-
erties of the Bloch modes of nonlinear periodic structures have been extensively studied in the
one-dimensional geometries, including the Bragg gratings and waveguide arrays [23, 24], as
well as the study of modulational instability of one-dimensional waves [25, 26, 27, 28, 29, 30].
More recently, the Brillouin zone structure of nonlinear two-dimensional photonic lattices was
characterized based on the features of collective wave dynamics for partially coherent multi-
band excitations [31]. Nevertheless, to the best of our knowledge, no experimental studies of
individual two-dimensional Bloch waves from different bands and probing the Bloch wave local
dispersion have been reported yet.

The aim of this paper is twofold. First, we probe the local spatial dispersion of the Bloch
modes of a two-dimensional optically-induced photonic lattice by analyzing the evolution of
linear and nonlinear propagation modes associated with the high-symmetry points of the first
Brillouin zone. In particular, we excite the Bloch waves associated with the high-symmetry
points of the two-dimensional lattice by matching their unique phase structure and observe dif-
ferent regimes of the linear diffraction. Second, we employ a strong self-focusing nonlinearity
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Fig. 1. (a) Experimental image of a two-dimensional optically-induced photonic lattice, that
is spatially periodic in the transverse directions (x,y) and stationary along the longitudinal
direction z. (b) Calculated bandgap dispersionβ(K). Dots indicate the main symmetry
points. Inset in (b) depicts the corresponding first Brillouin zone.

and study nonlinear self-action effects for the two-dimensional Bloch waves. This allows us to
probe and characterize the spatial diffraction of each particular Bloch mode, depending on the
curvature of the dispersion surfaces at the corresponding point of the Brillouin zone.

2. Two-dimensional Bloch waves: theoretical background

We study the propagation of an extraordinary polarized optical beam (a probe beam) in a biased
photorefractive crystal with an optically induced two-dimensional photonic lattice. We consider
a spatially periodic pattern of the refractive index in the form of a square lattice, which is sta-
tionary in the longitudinal (z) direction [Fig. 1(a)]. The photonic lattice is formed by the inter-
ference of four mutually coherent ordinary polarized optical beams. This interference pattern
[Fig. 1(a)],

Ip(x,y) = Ig{cos[π(x+y)/d]+cos[π(x−y)/d]}2,

induces a refractive index modulation of the crystal for extraordinary polarized light via the
strong electro-optic effect [32]. Herex andy are the transverse coordinates, andd is the lat-
tice period. The spatial evolution of the extraordinary polarized beam with a slowly varying
amplitudeE(x,y,z) propagating along the lattice is then governed by the following nonlinear
parabolic equation,

i
∂E
∂z

+D

(
∂ 2E
∂x2 +

∂ 2E
∂y2

)
+F (x,y, |E|2)E = 0, (1)

where
F (x,y, |E|2) = − γ

Ib + Ip(x,y)+ |E|2 (2)

describes the refractive index change that includes the two-dimensional lattice itself and the
self-induced index change from the probe beam. The parameters used for numerical calcula-
tions are chosen to match the conditions of typical experiments discussed below: the dimen-
sionless variablesx, y, z are normalized to the typical scalexs = ys = 1 µm, andzs = 1mm,
respectively; the diffraction coefficient isD = zsλ /(4πn0x2

s); n0 = 2.35 is the refractive index
of a bulk photorefractive crystal,λ = 532nm is the laser wavelength in vacuum, the parameter
Ib = 1 is the constant dark irradiance,γ = 2.36 is a nonlinear coefficient proportional to the
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Fig. 2. Intensity (top) and phase (bottom) of different Bloch modes from the high sym-
metry points of the first and second band of a square lattice. The blue color for the phase
distribution corresponds to the zero phase, while the red color corresponds to theπ phase.

electro-optic coefficient and the applied DC electric field, lattice modulation isIg = 0.49, and
d = 23µm is the lattice period.

Such a periodic modulation of the refractive index results in the formation of a bandgap
spectrum for the transverse components of the wave vectorsKx and Ky. Then the propaga-
tion of linear waves through the lattice is described by the spatially extended two-dimensional
eigenmodes, known as the two-dimensional Bloch waves. They can be found as solutions of
linearized equation (1) in the form

E(x,y;z) = ψ(x,y)exp(iβz+ iKxx+ iKyy), (3)

whereψ(x,y) is a periodic function with the periodicity of the underlying lattice, andβ is the
propagation constant. For a square lattice shown in Fig. 1(a), the dispersion relationβ(Kx,Ky)
is invariant with respect to the translationsKx,y → Kx,y±2π/d, and therefore is fully defined
by its values in the first Brillouin zone [Fig. 1(b, inset)]. The dispersion relationβ(Kx,Ky) for
this lattice is shown in Fig. 1(b) where the high-symmetry points of the lattice are marked by
red dots.

It is important to note that, for the chosen lattice parameters, there exists a full two-
dimensional band gap between the first and the second spectral band. The existence of a typical
bandgap structure of the lattice with a complete two-dimensional gap and the highly nonlinear
properties of the photorefractive crystal make the optically-induced photonic lattice a direct
analog of a two-dimensional nonlinear photonic crystal. Therefore, our experiments offer an
ideal test-bench for the similar phenomena with highly nonlinear and tunable two-dimensional
photonic crystals that may be studied in the future with fabricated structures in nonlinear mate-
rials.

The intensity and phase structure of the calculated Bloch waves for the high symmetry points
of the lattice from the first and second spectral bands are shown in Fig. 2. The upper row
shows the Bloch-wave intensity profiles and the bottom row shows the corresponding phase
structure. As a reference, the first column shows the light intensity of the lattice itself. For
the two-dimensional Bloch waves from the first band, the intensity distribution of all modes is
reflecting the structure of the square lattice, with the intensity maxima coinciding with those of
the lattice. However, the phase structure differs substantially. As can be seen from Fig. 2, the
phase of the two-dimensional Bloch waves originating from theΓ1 point is constant. The phase
structure becomes nontrivial for the modes from the X1 and M1 points. For the X1 (Y1) point,
the phase represents a stripe-like pattern being constant along one principal direction of the
lattice and exhibitingπ phase jumps along the other direction. For the Bloch waves originating

#10229 - $15.00 USD Received 9 January 2006; received 15 February 2006; accepted 17 February 2006

(C) 2006 OSA 6 March 2006 / Vol. 14,  No. 5 / OPTICS EXPRESS  1917



from the M1 point the phase distribution resembles a chessboard pattern.
On the other hand, the two-dimensional Bloch modes from the second spectral band have the

intensity maxima centered between the maxima of the square lattice. The phase structure has a
form of stripes oriented along one of the principal directions of the two-dimensional lattice for
the X2 point, or in 45◦ with respect to the principal axes for the M2 point. TheΓ2 point appears
to be nearly degenerate with the propagation constants nearly the same for the second, third,
and fourth bands, and we do not consider it here.

The difference in the phase structure of the two-dimensional Bloch waves translates into the
differences in propagation dynamics for beams of a finite size which spectrum is localized in
the vicinity of the corresponding high-symmetry points in the Brillouin zone. Indeed, the alter-
nating phase is a signature of strong Bragg scattering, that may lead to an enhanced diffraction
of beams similar to the effect of the dispersion enhancement in the Bragg gratings [33]. There-
fore, the beams can experience anisotropic diffraction due to the asymmetric phase structure of
the corresponding Bloch waves, and this can be detected by analyzing the beam broadening in
the linear regime.

The sign of the curvature of the related dispersion surface can be identified experimentally
utilizing the nonlinear self-action of the beam. In the case of a medium with positive (self-
focusing) nonlinearity, increasing input beam intensity will result in either focusing or defocus-
ing of the output beam depending on whether the curvature of the dispersion surface is convex
or concave, respectively. A close examination of the spatial dispersion defined by the bandgap
spectrum of the lattice [Fig. 1(b)] shows that the beams associated with theΓ1 and X2 points
will experience self-focusing in both(x,y) directions due to the convex curvature along thex
andy directions. On the other hand, the beams associated with the M1 point will experience
nonlinear self-spreading due to the concave curvature at the corresponding point of the disper-
sion surface. Totally different behavior is expected for the beams associated with the X1 point
of the lattice spectrum, as the curvatures of the dispersion surface are opposite in thex andy
directions. Such beams will experience an anisotropic nonlinear response: they will focus along
the direction of the constant phase and at the same time will self-defocus in the orthogonal di-
rection. The symmetry point M2 of the dispersion curve is degenerate between the second and
the third bands, with both bands having opposite but isotropic curvatures. Due to this degen-
eracy the nonlinear self-action of the beams associated with this point will result in a complex
beam dynamics.

3. Experimental arrangements

In order to study experimentally the generation, formation and propagation of linear and nonlin-
ear Bloch waves in two-dimensional photonic lattices, we implement the setup shown schemati-
cally in Fig. 3. An optical beam from a cw frequency doubled Nd:YVO4 laser, at the wavelength
of 532 nm, is split by a polarizing beam splitter into two beams with orthogonal polarizations.
The vertically polarized beam is passed through a diffractive optical element (DOE), which
produces two orthogonally oriented pairs of beams. An optical telescope combines these four
beams at the input face of the photorefractive crystal, thus forming a two-dimensional square
interference pattern which is stationary along the crystal length (see inset in Fig. 3). The period
of this pattern is 23µm. The crystal is a Cerium doped SBN:60 of 20mm× 5mm× 5mm
biased externally with a DC electric field of 4 kV/cm applied along the c-axis (horizontal). Due
to a strong anisotropy of the electro-optic effect, the ordinary polarized lattice beams will prop-
agate linearly inside the crystal, while in the same time inducing a refractive index modulation
for the extraordinary polarized (probe) beam [32].

The second, extraordinary polarized laser beam is expanded by a telescope and illuminates
the active area of a Hamamatsu programmable phase modulator (PPM). The modulated beam
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Fig. 3. Experimental setup for the excitation of two-dimensional Bloch modes: HV: High
voltage, CCD: camera, FF: Fourier filter mask,λ /2: half wave plate; PPM: Programmable
phase modulator, DOE: Diffractive optical element to produce four coherent beams, PBS:
Polarizing beam splitter. Left inset: Geometry of the two-dimensional optical lattice. Right
inset: Example of a phase and amplitude engineered wave in the optical lattice.

is then imaged by a large numerical aperture telescope at the input face of the photorefractive
crystal. A spatial Fourier filter (FF) is placed in the focal plane of the telescope to eliminate
higher-order spectral components and ensure that the optical beam entering the crystal will have
the phase and amplitude structure required to match the specific Bloch mode. The modulated
probe beam is combined with the lattice onto a beam splitter. Thus it will propagate onto the
induced periodic index modulation and simultaneously will experience a strong nonlinear self-
action at sub-micro-Watt range, due to the strong photorefractive nonlinearity. Both faces of
the crystal can be imaged on a CCD camera by a high numerical aperture lens to capture beam
intensity distribution.

In order to excite selectively different Bloch modes of the two-dimensional lattice, the optical
beam must match their transverse amplitude structure. This is achieved by the use of PPM that
converts the initially Gaussian probe beam into the desired amplitude and phase modulation at
the front face of the photorefractive crystal. For low input intensity the incident probe beam,
representing linear Bloch wave, does not affect the refractive index of the lattice and hence its
propagation is completely determined by the dispersion at the particular point of the Brillouin
zone. A finite beam will diffract with a rate depending on the value of the diffraction coefficients
along the principal directions of the lattice. These diffraction coefficients are determined by
the curvature of the dispersion surfaces along thex and/ory directions. With increasing power,
nonlinear self-action of the beam will counteract its diffraction in the case of normal diffraction,
but it will enhance the beam spreading in the case of the anomalous diffraction. These features
of the nonlinear self-action of finite beams allows us to identify the character of the dispersion
curves when the beam is associated with a specific Bloch mode of the lattice.

Our experiments are complemented by the numerical simulations of the underlying equa-
tion (1) with the initial conditions matching the transverse structure of the corresponding Bloch
wave superimposed on a Gaussian carrier beam

E(x,y) = Aexp(−x2/w2
x −y2/w2

y), (4)

whereA is a constant amplitude,wx andwy are the corresponding beam widths along thex
andy axes, respectively. Our numerical simulations allow us to trace, with a high accuracy, the
actual beam evolution inside the crystal that is not directly accessible in experiment, as well as
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Fig. 4. Experimental data (top row) and numerical results (bottom) for the excitation of the
two-dimensional Bloch waves from theΓ point of the first spectral band (Γ1). (a) Input
beam; (b-e) outputs for input powers of 25 nW, 125 nW, 250 nW, and 375 nW, respectively.

provide the opportunity to test the beam evolution for larger propagation distances beyond the
experimentally accessible crystal lengths.

4. Excitation of the Bloch modes of the first band

First, we study experimentally the propagation of beams associated with different Bloch waves
from the first spectral band of the lattice bandgap spectrum (Fig. 1).

4.1. Γ1-point

The excitation of the pointΓ1 is realized simply by launching a Gaussian beam [Eq. (4)] along
the lattice and having zero transverse wavevector components. The structure of this Bloch wave
is fully symmetric along the principal axes of the lattice (Fig. 2). If the initial beam excites a
single lattice site, then the diffraction output represents a typical discrete diffraction [34, 35]
and it is well suited to characterizing the induced periodic potential. When the intensity of
the initial beam is high enough, the nonlinearity induced index change leads to a shift of the
propagation constant inside the total internal reflection gap [Fig. 1(b)] and gives rise to the
formation of discrete lattice solitons [34, 35].

Our experimental results were performed with an input beam of widthwx = wy = 18µm. For
low input powers of 25nW [see Fig. 4(a)] the beam undergoes strong discrete diffraction on the
lattice, where most of its energy is transferred to the outside lobes. With increasing the laser
power [Fig. 4(c-e)] the beam self-focuses leading to the formation of a discrete lattice soliton
in agreement with previous experimental studies [34, 35]. The numerical simulations shown in
Fig. 4 (bottom row) are in good agreement with the experimental observations.

4.2. X1-point

The Bloch wave at the X symmetry point of the first band has a strongly asymmetric phase
structure. This leads to anisotropic diffraction for the propagating beams associated with this
Bloch mode, allowing for new types of waveguiding [36, 37] due to different curvatures of the
dispersion surface inx andy directions. In order to balance the rate of beam broadening due to
diffraction along these directions, in experiment the input beam is made elliptical, elongated in
form of 3 humps along the x axis. Its phase is constant along they direction and alternates by
π along the perpendicularx direction [Fig. 5(a)] (The image is slightly overexposed, so outer
lobes appear to be stronger than they are). This stripe-structure is launched on site, i.e. with
position of the intensity maxima on lattice sites. In numerics, the input profile is modeled by
the following expression

E(x,y) = Acos(Kx)exp(−x2/w2
x −y2/w2

y),
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Fig. 5. Experimental data (top row) and numerical results (bottom) for the excitation of the
two-dimensional Bloch waves from the X point of the first spectral band (X1). (a) Input
beam; (b,c) outputs for input powers of 25 nW and 375 nW, respectively.
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Fig. 6. Experimental data (top row) and numerical results (bottom) for the excitation of the
two-dimensional Bloch waves from the M point of the first spectral band (M1). (a) Input
beam; (b-e) outputs for input powers of 40nW, 125nW, 300nW, and 850nW, respectively.

wherewx = 100µm, wy = 33µm andK = π/d is the lattice wavevector.
Our experimental results and the corresponding numerical simulations show the same be-

havior for the nonlinear response of the beam at the output face of the crystal [Fig. 5(b,c)
top and bottom row respectively]. At low laser powers, the initial beam spreads strongly in
x-direction due to the larger curvature of the dispersion surface. Increasing beam power leads
to strong focusing of the beam alongy direction and beam spreading alongx axis. This dif-
ference in the nonlinear self-action of the beam allows one to identify experimentally that the
dispersion surface has opposite curvatures in two principal directions of the lattice as follows
from the theoretically calculated band-gap diagram [Fig. 1(b)]. The process of strong focusing
along the non-modulatedy direction is closely related the effect of grating mediated waveguid-
ing [36, 37].

4.3. M1-point

The structure of the dispersion surface near the M symmetry point of the first band is symmetric
in x andy directions. To match the Bloch-wave profile, the input beam is modulated such that
it represents humps of alternating phase in the form

E(x,y) = Acos(Kx)cos(Ky)exp(−x2/w2
x −y2/w2

y),

with wx = wy = 51µm [Fig. 6(a)].
The curvature of the dispersion surface is concave as indicated in Fig. 1(b). Therefore the

initial beam is expected to exhibit enhanced defocusing with increasing of the beam power. Our
experimental measurements of the output beam intensity distribution are depicted in Fig. 6. At
low laser powers (P = 40nW) the beam diffracts linearly forming a Bloch state from the M1-
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Fig. 7. Experimental data (top row) and numerical results (bottom) for the excitation of the
two-dimensional Bloch waves from the X point of the second spectral band (X2). (a) Input
beam; (b-e) outputs for input powers of 20nW, 50nW, 100nW, and 200nW, respectively.

symmetry point, shown in Fig. 6(b). With increasing power [Fig. 6(c-e) at power levels 125nW,
300nW, and 850nW, respectively] the beam defocuses as expected and forms a square type
pattern [Fig. 6(e)]. Similar behavior is also observed in the performed numerical simulations
[Fig. 6, bottom row].

5. Excitation of the Bloch modes of the second band

The second band of the lattice bandgap spectrum is separated from the first band by a two-
dimensional photonic gap. The Bloch modes from the top of the second band (as the X sym-
metry point) then can be moved by nonlinearity inside the gap, leading to the formation of
spatially localized gap solitons. On the other hand, the second band overlaps with the higher-
order bands at theΓ and M points leading to degeneracy of the two-dimensional Bloch modes
and subsequently complex beam dynamics that are reproducible in numerical simulations and
experiments but difficult to interpret. Out of these degenerate points, below we consider only
the M symmetry point.

5.1. X2-point

In order to match the profile of the Bloch wave from the X symmetry point of the second band
we use a modulated Gaussian beam, of the form

E(x,y) = Acos[K(x−d/2)]exp(−x2/w2
x −y2/w2

y),

where the maxima of this modulated pattern [Fig. 7(a)] are shifted with respect to the lattice
maxima by half a lattice period along thex axis. The structure of the dispersion surface of this
Bloch mode is highly anisotropic, therefore the beam diffracts differently inx andy directions.
To account for this anisotropic diffraction we used an elliptic beam elongated along thex axis
with wx = 100µm andwy = 33µm. At low laser powers (20nW) the beam diffracts linearly,
while reproducing the structure of the Bloch wave from the X point of the second band (Fig. 2).
With increase of the laser power [50nW, 100nW, and 200nW for Fig. 7(c-e), respectively] the
beam focuses in both transverse directions and forms a strongly localized state [Fig. 7(e)]. Such
state represents the theoretically predicted gap solitons in photonic crystals [17, 18]. It has a
reduced symmetry with respect to the lattice and it is formed by the combined action of Bragg
reflection inx-direction and total internal reflection iny-direction [38]. The experimental data
are in excellent agreement with the numerical simulations [Fig. 7(bottom row)].

We note that a symmetric superposition of X2 and Y2 states gives rise to symmetric gap
solitons [17, 18] or gap vortices [39, 40].
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Fig. 8. Experimental data (top row) and numerical results (bottom) for the excitation of the
two-dimensional Bloch waves from the M point of the second spectral band (M2). (a) Input
beam; (b-e) outputs for input powers of 25nW, 90nW, 270nW, and 660nW, respectively.

5.2. M2-point

The M symmetry point of the second band is degenerate as the propagation constant coincides
with that of the third band. Furthermore, two dispersion curves have opposite curvatures and
therefore a complex beam dynamics is expected. We select the Bloch mode [Fig. 2] which
structure can be approximated by horizontal stripes, that are oriented at a 45◦ angle with re-
spect to the principal axes of the lattice. To match this Bloch mode we used a Gaussian beam
modulated at 45◦ with respect to thex andy axes [Fig. 8(a)],

E(x,y) = Acos(Kx+Ky)exp(−x2/w2
x −y2/w2

y),

with wx = wy = 38µm.
Linear propagation at low power is shown in Fig. 8(b), where the beam is strongly diffracting

at the crystal output. At higher powers in (c) 90nW, (d) 270nW and (e) 660nW the nonlin-
ear self-action leads to strong beam reshaping. The central part of the beam experiences self-
defocusing while the intensity in the outer region increases. Again, our experimental results are
in good agreement with the numerical simulations [Fig. 8, bottom row].

6. Conclusions

We have generated experimentally and analyzed theoretically different types of two-
dimensional Bloch waves of a square photonic lattice by employing the phase imprinting
technique. We have excited selectively the Bloch waves belonging to different high-symmetry
points of the two-dimensional photonic lattice, and demonstrated the unique linear and non-
linear anisotropic properties of the lattice dispersion resulting from the different curvatures of
the dispersion surfaces of the first and second spectral bands. We have employed strong self-
focusing nonlinearity of biased photorefractive crystals to study, for the first time to our knowl-
edge, nonlinear self-action effects for the two-dimensional Bloch waves at the high-symmetry
points of both fundamental and higher-order spectral bands. We have demonstrated that our ex-
perimental results are in an excellent agreement with the numerical simulations of both linear
and nonlinear effects of the light propagation.
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