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Abstract: We discuss several improvements in the detection of at-
mospheric turbulence using SLOpe Detection And Ranging (SLODAR).
Frequently, SLODAR observations have shown strong ground-layer
turbulence, which is beneficial to adaptive optics. We show that current
methods which neglect atmospheric propagation effects can underestimate
the strength of high altitude turbulence by up to ∼ 30%. We show that
mirror and dome seeing turbulence can be a significant fraction of measured
ground-layer turbulence, some cases up to ∼ 50%. We also demonstrate
a novel technique to improve the nominal height resolution, by a factor
of 3, called Generalized SLODAR. This can be applied when sampling
high-altitude turbulence, where the nominal height resolution is the poorest,
or for resolving details in the important ground-layer.
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1. Introduction

The success of adaptive optics in astronomy has been demonstrated with 8-10m class tele-
scopes. Performance has been reported with the 10m Keck II Telescope [1], the 8m Very Large
Telescope [2], the 8.2m Subaru Telescope [3] and 8m Gemini North Telescope [4] and oth-
ers. The performance of adaptive optics systems depends strongly on the characteristics of the
atmospheric turbulence above the telescope [5]. Information about the height distribution of
the atmospheric turbulence in terms of its strength and velocity can be used to optimize adap-
tive optic models, and prove the case for future installations. Measurements of the atmospheric
turbulence can reveal important parameters for adaptive optics, the coherence length, r 0, the
coherence time, τ0, and the anisoplantanic angle, θ0. Other useful parameters include the outer
scale, L0, and the power law, β , of the power spectrum of spatial phase fluctuations (for Kol-
mogorov, L0 = ∞ and β = 11/3). Measurement of these parameters has been emphasized with
the planned construction of Extremely Large Telescopes (ELT) and new adaptive optic tech-
nologies, such as Ground Layer Adaptive Optics (GLAO). This has led to numerous campaigns
to characterize the atmospheric turbulence profile at current or proposed observatory sites, for
example, the Cerro Tololo campaign [6]. At many sites a significant fraction of the turbulence
has been found near the ground, which is favorable for GLAO. This is promising as GLAO
relies on compensating the low altitude turbulence and providing a uniform partial correction
over relatively wide-field of several arcminutes [7-9].

Various techniques are used for turbulence ranging, including direct sensing with microther-
mal sensors on towers [10] or balloons [11], remote-sensing with acoustic scattering (SO-
DAR) [12], or triangulation of scintillation (SCIDAR) [13, 14] or of image motion (SLODAR)
[15, 16]. These techniques have reached a degree of maturity exhibiting reasonable agreement
when used together in campaigns ([6], Cerro Tololo campaign). Each technique has its benefits
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and limitations in terms of cost, height resolution, height range, temporal resolution, ease of
implementation and data reduction complexity.

Fig. 1. Diagram illustrating the geometry of the SLODAR method for a N=4 system. θ is
the double star angular separation. D is the diameter of the telescope pupil and w the width
of the sub-aperture of the Shack-Hartmann Wavefront Sensor (SHWFS) array. The centers
of the altitude bins are given by Δδh where Δ is the lateral pupil separation (units of w) and
δh = w/θ . The ground-layer can be analyzed in higher-resolution by utilization of double
stars having larger θ .

The SLODAR technique, Fig. 1, is based on Shack-Hartmann Wavefront Sensor (SHWFS)
that measures the averaged local wavefront derivative or slope across the telescope pupil using
an array, (N ×N), of square sub-apertures or lenslets. The 2-D spatial cross-covariance of the
sub-aperture spot motions (or Z-tilts, as sub-aperture image data are thresholded prior to cen-
troid calculation, see [16]) of the double star components in each frame are averaged. Then a
1-D slice is taken along the double star separation axis and then inverted against the 1-D theo-
retical covariance impulse functions providing an estimate of the C 2

N(h)dh [16]. The process of
fitting covariance impulse functions allows the estimation of the outer scale, L 0, and the power
law, β , of the power spectrum of spatial phase fluctuations. The process of obtaining C 2

N(h)dh
information from the observational data is further explained in Section 4. The vertical resolu-
tion is uniform, given by δh = w/θ where w is sub-aperture size, or lenslet size mapping to
the telescope pupil. The highest sampled layer, hN−1 = (N −1)δh ≈ Hmax = D/θ , where N is
number of sub-apertures across the telescope pupil, with the ground layer denoted as h 0 = 0.
The vertical resolution and maximum sample height are scaled by inverse of the air mass, χ , or
cos(ζ ), where ζ is the zenith distance.

The exposure times are typically 4 ms to 8 ms and directly proportional to sub-aperture size,
related to the wind speed crossing timescales. The sub-aperture sizes are designed to be approx-
imately equal or less than r0, or ranging from 5 cm to 15 cm depending on the median seeing.
Sensitivity to higher altitude turbulence is reduced because there are fewer longer baselines in
the pupil, inability to freeze turbulence due to high wind speeds, turbulence strength is usually
weak (compared to ground-layer) and covariance impulse response decreases with altitude due
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to propagations effects. This paper will attempt to lessen or mitigate the problems arising from
these factors, particularly focussing on the propagation effects, removal of mirror and dome
seeing turbulence and improving the height resolution.

With a scientific motivation to determine the statistical properties of the height distribution of
turbulence at medium quality astronomical site, we have been pursuing an extensive SLODAR
campaign to characterize the atmospheric turbulence at the Siding Spring Observatory (SSO).
Data taken consists of 7x7 SLODAR instrument on the ANU (Australian National University)
24” (1”=2.54cm) telescope and 17x17 SLODAR instrument ANU 40” telescope. A portion of
data taken with the ANU 40” telescope implemented real-time data processing at 200 fps to
improve the observational data quality and reduce storage requirements (no need to store raw
camera frames). The ANU 17x17 SLODAR instrument has obtained δh = 75 m and H max =
1200 m when observing δ Apodis having separation, θ = 102.9” with a zenith distance, ζ =
50◦. For high altitude sampling, we have obtained δh = 2400 m and H max = 40800 m when
observing α Crucis having separation, θ = 4.1” with a zenith distance, ζ = 35 ◦.

We have discovered a tendency for the usual implementation of SLODAR to underestimate
the strength of high turbulent layers. This was later confirmed in SLODAR numerical simu-
lations involving phase screens with Fresnel and Geometrical propagation techniques. To ex-
amine in further detail, theoretical calculations were implemented for the covariance impulse
functions [16] using modified phase power spectrum to model Fresnel propagation. We describe
the propagation effects on SLODAR in Section 2.

Also discovered was that the majority of the turbulence profiles were dominated by the
ground-layer or zero altitude contribution, h 0 = 0, found in part to be caused by strong mirror
and dome seeing turbulence. By applying a high pass filter with cut-off of 1-2 Hz to the tem-
poral centroid data streams, it was possible to remove the mirror and dome seeing turbulence
from the ground-layer measurement. However, at this stage we point out that the ground-layer
at Siding Spring dominates the seeing, particularly so on nights with poor seeing. We describe
the process of removing dome and mirror seeing turbulence from SLODAR data in Section 3.

In order to obtain improved vertical resolution, we have modified the instrument to optically
move the zero height analysis plane from the telescope pupil upwards to fractional heights of
the nominal height resolution, δh. We call this technique Generalized SLODAR and we report
on the methodology, numerical simulations and observational results in Section 4.

A full report on the Siding Spring SLODAR campaign, which now covers one week per
season for 18 months, will be forthcoming in a later publication.

2. Propagation effects of high-altitude layers

The retrieval of the turbulence profile was initially described by the method outlined by Wil-
son [15], as the spatial cross-correlation of the centroid data from star A and star B de-convolved
with the spatial auto-correlation of the centroid data from star A, see Fig. 1. The global X and
Y tilts of the double star components, A and B, are subtracted from the centroid data, to remove
any telescope tracking errors. The method assumes the auto-covariance (”auto-correlation” by
Wilson [15]) is the spatial invariant impulse response of a thin layer for all sampling heights.
This assumption simplifies the data reduction but neglects the effects of the global tilt subtrac-
tion. Later, Butterley et al. [16] included the effects of global tilt subtraction by calculation of
the theoretical covariance impulse functions, based on the power spectrum of phase fluctuations
of a thin turbulent layer located at each sampling height. For Kolmogorov turbulence, Butterley
et al. [16] show that global tilt subtraction adds tilt-anisoplanatism which could under estimate
the strength of the highest sampling altitude by up to 20%. The tilt-anisoplanatism is caused
by the separation of the projected telescope pupils of star A and B onto the turbulent layer, see
Fig. 1.
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Butterley et. al. [16] calculations do not take into account propagation effects of the high
altitude turbulent layers to the telescope pupil where SLODAR analysis is performed. Propaga-
tion may be included by using a modified input power spectrum of spatial phase fluctuations,
derived by Roddier [17] as

P0
φ ( f ) = Pφ ( f )cos2(πλh f 2) (1)

in which Pφ ( f ) is the phase power spectrum with no propagation, in other words as the
wavefront leaves the layer at height h. P0

φ ( f ) is then the power spectrum at the ground, h = 0.

The nulls of the propagated power spectrum, P 0
φ ( fn) = 0 occurs at spatial frequencies, fn =

[(n + 0.5)1/2]/r f , for integer n = 0,1, ..., and where r f = (λh)1/2 denotes the layer’s Fresnel
length. This results in a measurable decrease, in the variance of the image motion across sub-
aperture with size comparable to the Fresnel length. The effect is increased by the removal of
global tilt in the reduction process, as this eliminates low spatial frequencies.

Therefore, propagation effects are most important for small sub-apertures such as those em-
ployed in SLODAR. For example, a turbulent layer at h = 15 km has a Fresnel length of 8.6 cm
at a wavelength of 0.5 microns. In our site testing observations at Siding Spring, we used small
(5.8 cm on the 40” and 8.5 cm on the 24” telescopes) sub-apertures for SLODAR because
the seeing is often poor, with r0 about 8 cm in median seeing. These sub-apertures sizes are
similar to the 5 cm sub-apertures used by the European Southern Observatory (ESO) portable
SLODAR system using a 40 cm telescope [15, 16].

In Fig. 2 we compare the effects of propagation for a turbulent layer at H = 7709 m, or pupil
separation, Δ = 6, projected onto H, where Δ = Hθ/w. The target double star referenced in
calculations is α Cen with separation, θ = 9.44”. The plots show the corresponding covariance
impulse function Δ = 6 calculated with numerical simulations involving 300 phase screens us-
ing Fresnel propagation (only for propagation effects) and the calculated theoretical covariance
impulse response using the methodology outlined by Butterley et al. [16] with the modified
power spectrum of phase fluctuations (Eq. 1) (only for propagation effects). The numerical and
theoretical models for the results in Fig. 2 reference the pupil geometry of the ANU 17x17
SLODAR instrument on the ANU 40” telescope. It is evident that propagation decreases the
covariance response peak by ∼ 20% causing a broadening effect with increasing height. The
results of Fig. 2 show an excellent agreement between numerical and theoretical results, hence
validating the use of Eq. 1 in theoretical calculations and analysis.

In Fig. 3 we show the effects of propagation on the theoretical covariance impulse response
functions for increasing height, H, and for sub-aperture sizes, w = 5.8 cm and w = 11.6 cm. The
covariance impulse functions are modelled for the ANU 17x17 SLODAR instrument using the
methodology outlined by Butterley et al. [16], but with the modified power spectrum, Eq. 1. The
w = 11.6 cm size sub-apertures are modelled using a telescope pupil with twice the diameter
(D = 2 m) compared to the w = 5.8 cm size sub-apertures (D = 1 m), but impulse functions are
identical as pupil geometry is unchanged [16]. The propagation effects in decreasing the peak
covariance values become more severe for increasing height, H = Δδh, where in Fig. 3 have
the values δh = 1.29 km and Hmax = 20.6 km (Δ = 16). The propagation effects are lessened
for the larger sized sub-aperture, w = 11.6 cm, but are still significant.

In Fig. 4 we compare propagation effects on observational data taken 16:19 12 April 2006
(UTC) with the ANU 17x17 SLODAR instrument on the ANU 40” telescope. The 17x17 SLO-
DAR instrument has relatively small sub-aperture size, w = 5.8 cm, and therefore susceptible
to propagation effects in the underestimation of high altitude turbulence. The observational
data represents an individual run of the double star α Cen, with angular separation, θ = 9.44 ′′.
The dataset consists of 2000 frames at 200 fps and exposure of 2 ms under excellent seeing,
r0 = 18.2 cm, for Siding Spring. The dataset is selected as an example as it exhibits significant
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Fig. 2. Comparison of propagation effects on the covariance response function using numer-
ical simulations (black dots with error bars) using Fresnel propagation and with theoretical
values (red line with crosses) using the modified power spectrum (Eq. 1). The covariance
plots are (a) longitudinal no propagation, (b) longitudinal with propagation, (c) transverse
no propagation and (d) transverse with propagation. The longitudinal direction refers to di-
rection parallel to double star separation axis, aligned along the x-direction of the SHWFS.
The transverse direction refers to direction perpendicular to double star separation axis,
aligned along the y-direction of the SHWFS. The comparisons are for single turbulent with
Δ = 6 or height H = 7709 m and normalized by their respective Δ = 0 or height H = 0 m
functions (i.e. no fitting involved). Plots (b) and (d) show that propagation effects decrease
the peak covariance value (δ i = 6) by ∼ 20% compared to plots (a) and (c).
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Fig. 3. Comparison of propagation effects on the normalized theoretical covariance re-
sponse functions for increasing height (H) and different sub-aperture sizes, w. The co-
variance plots are (a) longitudinal and (b) transverse. The sub-aperture size w = 5.8 cm
with no propagation (black line with crosses); w = 11.6 cm with propagation (blue line)
and w = 5.8 cm with propagation (red line). The plots show that propagation effects are
lessened by the larger sized sub-aperture, w = 11.6 cm, but still significant ∼ 30%. The
theoretical covariance functions are plotted for even Δ with H = Δδh, where δh = 1.29 km
and Hmax = 20.6 km (Δ = 16). The theoretical covariance functions for the SLODAR model
are discrete valued, defined for integer values, δ i, but plotted as continuous lines for clarity.
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Fig. 4. A comparison between using the theoretical covariance impulse functions with (a)
no propagation effects and (b) propagation effects on actual observational data taken 16:19
12 April 2006 (UTC) with ANU 17x17 SLODAR instrument on the ANU 40” telescope.
The observational data was taken under excellent seeing, r0 = 18.2 cm and exhibits sig-
nificant high-altitude turbulence. The inclusion of propagation effects, (b), increases the
strength of the highest turbulence, H ∼ 16 km by ∼ 25% relative to (a), in agreement with
Fig. 3. The high-altitude turbulence H > 15 km causes a steeper increase in the cumulative
turbulence of (b) by ∼ 30% compared to (a) ∼ 25%. The high-altitude of (b) appears more
concentrated than (a).
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high-altitude turbulence, subsequently verified in the temporal-spatial cross-covariance data,
moving at speeds ∼ 20 ms−1. The centroid data was filtered with a 1 Hz high-pass FIR (Fi-
nite Impulse Response) filter to remove static mirror and dome seeing contributions from the
ground-layer Δ = 0 measurement (see Section 3).The estimation of the C 2

N(h)dh profile was
implemented by fitting of the transverse (T) theoretical covariance functions for a Kolmogorov
turbulence power spectrum, β = 11/3. From Fig. 4 the inclusion of propagation effects increase
the strength of the high-altitude turbulence H > 15 km by ∼ 25%.

3. Removal of mirror and dome turbulence

Mirror and dome turbulence manifests as a distinct separate component in the power spectrum
of angular tilt. Mirror and dome turbulence appears at low temporal frequencies. The mirror
and dome turbulence contaminates the ground-layer measurement of the turbulence profile. In
some cases the mirror and dome turbulence can be falsely over-estimate the contribution of the
ground-layer relative to the free-atmosphere layers. The effects of mirror and dome seeing on
observational data are shown in Fig. 5. The observational data is taken with the ANU 17x17
SLODAR instrument on the ANU 40” telescope.

The mirror and dome turbulence shows strong correlation in the zero spatial offset of the
temporal spatial cross-correlation frame data for time lags over 100 ms. Following a suggestion
by R. W. Wilson (private communication with C. Jenkins [18]) we have found that the mirror
and dome turbulence can be removed from observational data by applying a high pass filter to
centroid data with cut-off approximately in the range of 1-2 Hz.

4. Improving the vertical resolution

The nominal height resolution of SLODAR is δh = w/θ , where w is the sub-aperture width
and θ is the angular separation of the observed double star (see Fig. 1). To improve the height
resolution, δh, assuming fixed θ and fixed exposure time, τ , is to reduce the size of the sub-
apertures, w. The number of signal photons per τ is directly proportional to w 2 so reducing w
will cause photon starvation and hence restrict observations to the brighter double stars (few
in number). The minimum useable sizes of w range from w = 5 cm for the portable ESO 8x8
SLODAR system [15] and w = 5.8 cm for our ANU 17x17 SLODAR system. Reducing w will
also present a number of second order effects, including less sensitivity to high altitude layers
due to typical high wind speeds and propagation effects. The high wind speeds, v will reduce
the variance of the observed tilts contributed by increasing the effective sampling distance of
wavefront tilts from w to τv when τv > w [19]. Propagation effects (see Section 2) will reduce
or null power in the phase fluctuation power spectrum at spatial frequencies near the Fresnel
length, or near w, resulting in reduction in the variance of the observed tilts contributed by the
layer. Hence a physical limit exists for minimum size of w and therefore a minimum height
resolution, δh, to ensure a satisfactory performance of SLODAR.

Therefore, we propose the concept of Generalized SLODAR that improves the height reso-
lution of SLODAR by combining measurements taken at regularly spaced SHWFS conjugation
heights at the nominal resolution, δh. The SHWFS conjugation heights are a fractional amount
of the nominal height resolution, δh. By combining NG datasets at regularly spaced SHWFS
conjugation heights, new information is provided about the atmospheric turbulence, and is pos-
sible to achieve a Generalized SLODAR height resolution, δh∗ = δh/NG.

We begin this section by describing the process of retrieving an estimated profile of the
atmospheric turbulence from observational data. We then introduce the notation and summa-
rize the results of theoretical covariance impulse functions derived in the paper by Butterley
et al. [16]. We then extend their results to the case of Generalized SLODAR by defining a
new set of coordinates and the methodology for combining measurements and retrieval of the
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Fig. 5. Plots (a) and (c) are observational data containing significant amounts of mirror and
dome seeing that cause over-estimating the contribution of the atmospheric ground-layer.
Plots (b) and (d) are observational data with mirror and dome seeing removed by appli-
cation of a high-pass filter with cut-off of 2 Hz to the centroid data streams. Plots (a) and
(b) are the Spectral Energy Density of the Y-centroid slope data (top) and Y-centroid data
stream (bottom) for star A sub-aperture index [i = 2, j = 5]. Plots (c) and (d) are AVI ani-
mations (size: (c) 579 KB and (d) 581 KB) of the spatial-temporal 2-D cross-covariance se-
quences for offset lags of 0 to 20 frames, each offset lag is 5 ms apart. The cross-covariance
sequences are for X-centroid and Y-centroid data, and normalized to the zero spatial offset
peak, [δ i = 0, δ j = 0], for zero offset lag, τ = 0 ms. The contribution of mirror and dome
seeing to the ground-layer measurement ([δ i = 0, δ j = 0], τ = 0 ms) of plot (c) is about
48%, observed as excess residual for [δ i = 0, δ j = 0] for τ = 50 ms. Plots (a)-(d) reference
the observational dataset of α Cen consisting of 20 s of data at 200 fps (4000 frames),
taken 12:43 20 June 2006 UTC with the ANU 17x17 SLODAR instrument on the ANU
40” telescope.
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super-resolution turbulence profile. We validate the methodology by showing the results of a
numerical simulation of resolving two phase screens closely separated in height. We then apply
the methodology to observational data and demonstrate an improvement by a factor of two in
height resolution.

The SLODAR technique does not measure the atmospheric turbulence profile directly but
needs to be recovered from the wavefront slope cross-covariance data from stars A and B.
The atmospheric turbulence profile is an internal property of the system that can be estimated
by fitting modelled theoretical covariance impulse response functions of thin turbulent layers
spaced by δh. This model assigns equal a priori probability to all heights (unbiased model).
The fitting procedure can be modelled as system of linear equations in matrix form, Ax = b.
A is the kernel matrix with column vectors corresponding the theoretical covariance impulse
response functions. b is an ensemble average of the observed atmospheric turbulence covariance
profile (that also includes systematic and statistical noise), represented as a column vector. x is
the quantity that we seek, an estimate of the atmospheric turbulence profile, represented as a
column vector of strengths of each thin layer.

We must note that the estimate of the atmospheric turbulence, x, is based on the input data,
b, assumptions made by the model, A, and the process to recover x, (inversion models). The
system is over-determined as there are more equations than variables so matrix A cannot be
directly inverted and a least squares solution is sought. The system solution, x, can be found by
least squares inversion,x = A+b, where A+ is the pseudo inverse of A. However, we note as b
contains unwanted noise so the system may be un-stable and hence the solution, x, invalid.

We can improve the inversion model by using the prior information that the layer strengths
are a positive quantity, x > 0 and that b is possibly corrupted with Gaussian noise. Such an
inversion model is the Non-Negative Least Squares (NNLS) algorithm. We have found through
simulation that the NNLS algorithm recovers the input atmosphere model more accurately than
other regularization algorithms, such as MAXENT and Tikhonov regularization. The simu-
lation utilized RegTools (Regularization Tools) [20], a publicly available MATLAB package
for analysis and solution of discrete ill-Posed problems. The NNLS algorithm is implemented
natively in MATLAB as the routine lsqnonneg and performs well on compact sources (mini-
mal smoothing). Hence the NNLS algorithm suitable with the thin-layer model assumption of
the atmosphere, as verified with typical high resolution measurements of atmospheric turbu-
lence [11].

For SLODAR, the 2-D theoretical covariance impulse response function to a turbulent layer
at altitude H for the wavefront tilts in longitudinal (L) direction, given that the double star
separation axis is aligned with SHWFS x-axis, has been derived by Butterley et al. [16]:

XL(Δ,δ i,δ j) =
1

Ncross
∑

valid i, j,i′ , j′
C

′x
i, j,i′ , j′ (Δ) (2)

The function C
′x
i, j,i′ , j′ (Δ) describes the theoretical covariance of x-directional slopes for a

cross-pair of sub-apertures with lateral pupil spatial offset (δ i,δ j) and layer height, H = Δδh,
after global tilt subtraction. The number of cross-pair lenslets having the same lateral pupil
spatial offset (δ i,δ j) for a given layer height, H,is denoted by Ncross. The notation used to
describe the theoretical covariance impulse response function, XL(Δ,δ i,δ j), is shown in Fig. 6.
The indices [i, j] refer to the lenslet index for star A and [i ′, j′] for star B. A cross-pair of
lenslets has a lateral pupil spatial offset defined by (δ i,δ j)=(i ′ − i, j′ − j), specified in units of
the sub-aperture width, w. The lenslet index, i, takes on integer values i = {1,2, ...,N}, where
N is the number of lenslets mapped across the diameter of the telescope pupil. Likewise for
indices j, i′ and j′. The lateral pupil spatial offset, δ i, takes on integer values δ i = {1−N,2−
N, ...,0,1, ...N −2,N−1}, specified in units of sub-aperture width, w. Likewise for δ j.
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Fig. 6. Extension of Fig. 1 to illustrate the notation used to describe the SLODAR the-
oretical covariance impulse function, XL(Δ,δ i,δ j) (see Eq. 2) and the notation used for
Generalized SLODAR.

If the double star separation axis is aligned with the SHWFS x-axis, then processing is sim-
plified by considering the covariance function of the tilts in longitudinal (L) or transverse (T)
directions relative to the lateral pupil spatial offset, (δ i,δ j), (units of w). A turbulent layer
height at H corresponds to a lateral pupil spatial separation, Δ = Hθ/w of telescope pupils,
specified in units of the sub-aperture width, w. The lateral pupil spatial separation, Δ, is an off-
set of the projected telescope pupils along the x-direction at the layer altitude, H, and takes on
integer values Δ = {0,1,2, ...,N − 1}. The physical separation of a pair of sub-apertures with
a spatial offset (δ i,δ j) projected on a layer at height, H, is then (ux, uy) where ux = |δ i+ Δ|w
and uy = |δ j|w, is used by C

′x
i, j,i′ , j′ (Δ) function. Hence the estimated strengths of the layers

are defined with height bins of widths δh and centered at Δδh. However, the practical height
resolution, δh, may be poorer depending on the signal-to-noise ratio of observational data and
the inversion model implemented to recover the estimated strengths.

The 2-D theoretical covariance impulse response function, XL(Δ,δ i,δ j), is an accurate
model, and takes into consideration the pupil geometry (mapping of circular or square sub-
apertures on the annular telescope), turbulence power spectrum (β , L o) and effects of ’global’
tilt subtraction (tilt anisoplanatism) required to remove telescope tracking errors. The parame-
ters Δ and (δ i,δ j) are integer valued and hence XL(Δ,δ i,δ j) is a discrete function that models
the impulse response of equally spaced thin layers with height, Δδh. The discrete impulse re-
sponse function XL(Δ,δ i,δ j) is in a format that is compatible with the discrete observational

covariance profile C
′x,obs
L,k (δ i,δ j). Hence the discrete function XL(Δ,δ i,δ j) can be specified in

matrix form, A, to model the system as a set of linear equations, Ax = b, and then inverted
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to solve for layer strengths, x = A+b. To further explain the process the discrete observational

covariance profile C
′x,obs
L,k (δ i,δ j) can be modelled as a linear equation in the form

C
′x,obs
L,k (δ i,δ j) = x0XL(0,δ i,δ j)+ x1XL(1,δ i,δ j)+ · · ·+ xN−1XL(N −1,δ i,δ j) (3)

where, as noted, the combination of δ i and δ j maps the theoretical covariance impulse re-
sponse, XL(Δ,δ i,δ j), of a particular height, H = Δw/θ . Expressing as a set of linear equations,
Ax = b, where x is a column vector of layer strengths:

⎡
⎢⎢⎢⎣

col {XL(0,δ i,δ j)} col {XL(1,δ i,δ j)} ... col {XL(N −1,δ i,δ j)} ⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x0

x1

.

xN−1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

col
{

C
′x,obs
L,k (δ i,δ j)

}⎤
⎥⎥⎥⎥⎦

(4)

where col{x} denotes the process that serializes the 2-D data, x, into a 1-D column vector
by stacking columns of x with increasing δ i.

The covariance impulse function is further simplified by taking a 1-D cut along y = 0 of the
2-D theoretical covariance function, XL(Δ,δ i,δ j), or by setting j′ = j or δ j = 0.

XL(Δ,δ i) =
1

Ncross
∑

valid i, j,i′
C

′x
i, j,i′ , j(Δ) (5)

The 1-D theoretical covariance function,XL(Δ,δ i) , is calculated for integer valued lateral
pupil spatial separations, Δ = {0,1,2, ...,N − 1} and the condition Δ = 0 corresponds to com-
pletely overlapped telescope pupils projected on the SHWFS. This configuration is when the
SHWFS is conjugated to the telescope pupil (h0=0 km), refer Fig. 6.

Information between the nominal height bins, Δδh, can be found at non-integer lateral pupil
spatial separations, Ωk = Δ+ηk = {0+ηk,1+ηk,2+ηk, ...,N−1+ηk}, where ηk takes values
between 0 and 1, where k is the index of the group of NG Generalized SLODAR datasets,
k = {0,1, ...,NG−1}. The value Ωk can be obtained by moving the SHWFS conjugation height,
h0, upwards by fractional amounts of the height resolution, h ∗

0 = ηkδh, and is illustrated in
Fig. 6. Moving the conjugation height, h∗

0, results in a lateral pupil spatial offsets, δmk = δ i+
ηk and δmk = ηk for δ i = 0, corresponding to a lateral pupil spatial separations, Ω k = ηk.
Hence telescope pupils are no longer completely overlapped at the SHWFS but separated by
a fractional amount of a lenslet. The non-integer lateral pupil spatial separations, Ω k, can be
thought of sampling new and unique spatial offsets, δ i+ η k, in the telescope pupil.

The aim of Generalized SLODAR is to reconstruct a super-resolution turbulence profile by
combining several datasets, k, having unique lateral pupil spatial separations, Ω k, and with
equal height resolutions, δh. The methodology for Generalized SLODAR is shown in Fig. 7.

To provide an unbiased super-resolution profile the lateral pupil spatial separations, Ω k, must
be equally spaced and hence require ηk to also be equally spaced. The fractional spacings, η k

are then given by ηk = k/NG and therefore ηk = (1/NG){0,1,2, ...,NG −1}.

#84195 - $15.00 USD Received 15 Jun 2007; revised 30 Aug 2007; accepted 9 Sep 2007; published 25 Oct 2007

(C) 2007 OSA 29 October 2007 / Vol. 15,  No. 22 / OPTICS EXPRESS  14855



Fig. 7. The data reduction methodology for Generalized SLODAR

We denote the observed global-tilt removed covariance profile in the longitudinal (L) direc-
tion of double star having a separation axis aligned along the x-axis of the SHWFS, for an

individual Generalized SLODAR dataset, k, to be C
′x,obs
L,k (δ i). Note that the symbol defined for

the observed covariance profile C
′x,obs
L,k (δ i) should be clearly distinguished from the theoreti-

cal covariance function for a cross-pair of lenslets, C
′x
i, j,i′ , j′

(Δ). We now need to transform the

observed covariance profile from a local lenslet-based coordinate system to a global coordi-

nate system, C
′x,obs
L,k (δmk), referenced to ηk = 0, or lateral spatial offsets in the telescope pupil

at h0 = 0. The global coordinate system of an individual Generalized SLODAR dataset, k, is
defined as δmk = δ i+ ηk, specified in units of the sub-aperture width, w. To construct the ob-

served super-resolution covariance profile, C∗′x,obs
L (δm∗), requires the C

′x,obs
L,k (δmk) profiles to

be first scaled to normalize fluctuations in seeing and then interleaved. The scaling parame-

ter, ak, normalizes C
′x,obs
L,k (δmk) to have equal seeing and hence remove any bias effects, and

defined as

ak =
A

′x,obs
L,0 (δ i = 0)

A
′x,obs
L,k (δ i = 0)

(6)

where A
′x,obs
L,k (δ i = 0) refers to the peak of the centroid-noise removed auto-covariance func-

tion for dataset k, and proportional to the total atmospheric seeing. For most cases the scal-
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ing parameter, ak, is close to unity, ak ≈ 1. The observed super-resolution covariance profile,

C∗′x,obs
L (δm∗), is then

C∗′x,obs
L (δm∗) =

⋃
k

akC
′x,obs
L,k (δmk) (7)

where

δm∗ =
⋃
k

δmk (8)

is the combined spatial offsets relative to the Classical SLODAR, expanded form:

δm∗ =
{

δm0 ∪δm1 ∪ ...∪δmNG−1
}

(9)

The pupil spatial separations are denoted by:

Ωk = Δ + ηk (10)

where

Ω∗ =
⋃
k

Ωk (11)

is the combined pupil spatial separations relative to the Classical SLODAR, expanded form:

Ω∗ =
{

Ω0 ∪Ω1 ∪ ...∪ΩNG−1
}

(12)

we now need to calculate the super-resolution theoretical function:

X∗
L (Ω∗,δm∗) =

1
Ncross

∑
valid m,l,m′

C
′x
m,l,m′

,l
(Ω∗) (13)

where m and l are now indices that reference a higher sampled SHWFS at fractional spacings
of a sub-aperture, w∗ = w/NG with total samples, of N∗ = NGN. Due to the complexity and time
required to compute X ∗

L (Ω∗,δm∗) it is best to approximate with interpolation methods. Through
numerical simulations involving phase screens, it found that cubic interpolation method is suit-
able for the X ∗

L (Ω∗,δm∗) function and spline interpolation for X ∗
T (Ω∗,δm∗) function.

The theoretical covariance function, X ∗
L (Ω∗,δm∗), can now be constructed in matrix form,

A, to model the system as a set of linear equations, Ax = b, and then inverted to solve for
layer strengths, x = A+b. Due to the larger size of the matrix A, it best to use a positively
constrained, x > 0 inversion method for compact sources (minimal smoothing to x), such as the
Non-Negative Least Squares (NNLS) algorithm implemented as the MATLAB iterative routine
lsqnonneg.

From theoretical and numerical simulations the technique is successful for NG = 3. For NG =
6 the results are progressively poorer due to a larger matrix being increasingly sensitive to noise.

We validate the Generalized SLODAR methodology presented in this paper by showing the
results of a numerical simulation for NG = 3 resulting in an effective height resolution, δh∗ =
δh/3. We confirm this by clearly separating two phase screens separated in height by h = 2δh ∗.

We model the simulation after the double star α Cen and the ANU 17x17 SLODAR instru-
ment on the ANU 40” telescope. The parameters of the simulation are listed in Tab. 1. The
Generalized SLODAR is simulated by sequentially moving the layers down in vertical height
by δh∗ or 400m for each fractional generalized pupil offsets, η k. A lateral pixel offset of 1cm
corresponds to vertical height of 200m. Therefore, for each dataset, decreasing the separation
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Parameter Value Description
θ 9.44” double angular star separation
χ 1.092 air mass
λ 0.5e-6 mean wavelength
D 1.02 m telescope diameter
O 0.45 secondary / primary obstruction ratio
w 0.06 m sub-aperture width (square)
N 17 number of sub-apertures across telescope diameter
δx 1 cm/pixel waverfront and pupil sampling
δxh 200 m/pixel vertical resolution of pupil sampling
Nf rames 4000 number of independent atmospheric realizations
Propagation Geometrical phase screens added together for pupil wavefront
H1 6800 m height of phase screen for layer 1
H2 7600 m height of phase screen for layer 2
r0 0.3 m total integrated seeing
β 11/3 power law of phase power spectrum (Kolmogorov)
NG 3 number of generalized datasets
ηk 0, 1/3, 2/3 fractional pupil offsets for generalized datasets
δh 1200 m nominal resolution of each generalized dataset
δh∗ 400 m super-resolution of combined profiles

Table 1. Parameters for the numerical simulation

of telescope pupils of star A and star B as projected onto the phase screens H1 and H2 by two
pixels (2x200m) achieved Generalized SLODAR. The wavefronts for each star at the SHWFS
is calculated by extracting the part of the phase screen that the pupils project on and then adding
together for each layer H1 and H2.

The results of the simulation clearly separated the phase screens as illustrated in Fig. 8.
We now apply the Generalized SLODAR methodology to observational data by combin-

ing two SLODAR datasets of the double star α Cen, angular separation of 9.44”, at Siding
Spring Observatory. The first dataset was captured at 10:04 21 June 2006 (UTC) with SHWFS
conjugation height h∗

0 = 550 m (η1 = 0.5) and second dataset was captured at 10:59 21 June
2006 (UTC) with SHWFS conjugation height h∗

0 = 990 m (η2 = 0.9). The third dataset hav-
ing SHWFS conjugation height h0 = 0 m (η0 = 0) was taken 12:43 21 June 2006 (UTC) and
excluded in the analysis as the atmospheric seeing changed significantly (poor seeing) during
the 1hr45mins of observing downtime. Note the fractional spacings of η 1 = 0.5 and η2 = 0.9
are not regularly spaced but the methodology and results remain valid. Each dataset consists
of 4000 frames captured at 200 fps using a fixed exposure of 2 ms with centroid sequences
from each lenslet pre-processed by 1 Hz high pass FIR filter to remove mirror and dome see-
ing contributions from the ground-layer turbulence measurement bin. The results are shown in
Fig. 9 and clearly demonstrate an improvement in height resolution by a factor two over the
nominal resolution of 1100 m, providing an ’effective’ resolution of 550 m. The error bars are
one standard deviation calculated by dividing the dataset into 10 segments of 400 frames. As
the SHWFS conjugation height h0 = 0 m (η0 = 0) was excluded from the analysis we added
a single impulse response function for Ω∗ = 0 to model the ground-layer. We note that the
turbulence bin for height 550 m does not register any strength. The error bar for this bin con-
strains the lowest turbulence to be below ∼ 50 m, as otherwise the finite width of the covariance
impulse response for layers at ∼ 50 m would cause spill-over exceeding the error bar.
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Fig. 8. Numerical simulation of Generalized SLODAR using parameters of Tab. 1. The
objective is to fully separate two thin turbulent layers with height separation, ΔH = 2δh∗
where δh∗ = δh/NG with δh = 1200 m and NG = 3 generalized datasets. Plots (a)-(d)
denote the numerical results as filled circles with error bars (black). Plot (a) shows the
averaged longitudinal auto-covariance profile using star A; plot (b) shows the combined

super-resolution longitudinal cross-covariance profile, C∗′x,obs
L (δm∗), using star A and star

B; plot (c) shows the super-resolution C2
N(h∗)dh∗ profile obtained by fitting super resolu-

tion kernel, X∗
L (Ω∗,δm∗), to the cross-covariance profile, plot (b), using 4000 atmospheric

realizations; plot (d) is similar to plot (c) except using 2000 atmospheric realizations. Plot
(a) denotes the best theoretical fit with parameters β = 3.63 and ρ0 = 0.31± 0.01 m as
continuous line (red); theoretical G-tilt of sub-aperture as circle (black); theoretical Z-tilt of
sub-aperture as square (black). Plot (b) denotes the best theoretical fit of super-resolution
C2

N(h)dh profile, plot (c), as continuous line (red). Plots (c) and (d) denote the modelled
atmosphere with parameters β = 3.67 and ρ0 = 0.3 as stem lines with asterisks (red).
The numerical simulation results shown in plots (a)-(d) confirm the validity of using the
methodology outlined in Section 4 and illustrated in Fig. 7.
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Fig. 9. Observational data of Generalized SLODAR, NG = 2 datasets, having fractional
offsets η1 = 0.5 and η2 = 0.9, and nominal height resolution, δh = 1102 m. The double star
is α Cen, with separation θ = 9.44”, observed 10:04 (η1) & 10:59 (η2) 21 June 2006 (UTC)
with the ANU 17x17 SLODAR instrument on the 40” telescope at SSO. The plots denote
the observation results as filled circles with error bars (black). Plot (a) shows the combined
super-resolution transverse cross-covariance profile, C∗′x,obs

T (δm∗), using 4000 frames for
each dataset. Plot (b) shows the super-resolution C2

N(h∗)dh∗ profile obtained by fitting super
resolution kernel, X∗

T (Ω∗,δm∗), to the cross-covariance profile, shown as continuous line
(red) in plot (a). The observational data gives the seeing conditions as ρ0 = 0.095±0.004 m
and a power law of β = 3.15±0.04. Plot (b) shows a 2x improvement in nominal resolution,
δh∗ ∼ δh/2, for the C2

N(h∗)dh∗ profile, indicating strongest turbulence is near the ground
≤ 50 m.

5. Conclusions

SLODAR is a simple and valuable technique, particularly for investigation of the ground layer
with inexpensive and simple equipment. We have shown that some care needs to be taken in the
analysis of SLODAR data when small (few cm) sub-apertures are used in the Shack-Hartmann
wavefront sensor, as Fresnel propagation effects can lead to underestimation of high layers,
thereby overestimating the importance of the common strong ground layers. We have shown
that pre-filtering the centroid data stream with a high-pass filter with a cut-off around 1-2 Hz can
remove mirror and dome seeing providing an accurate atmospheric ground-layer measurement.
We have also shown that a simple optical technique called Generalized SLODAR can yield
improved vertical resolution in the ground layer at the same time as measuring the high-altitude
turbulence.
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