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Abstract: We implement a novel experimental technique for generating
mono- and polychromatic optical beams with on-axis single vortex by
manipulating polarization singularities of light in birefringent crystals.
We demonstrate that, in contrast to the well-known optical quadrupoles
generated by beams propagating along the optical axis of a uniaxial crystal,
the beam bearing isolated single-charge on-axis vortex canbe generated if
the incident beam is tilted with respect to the optical axis at a certain angle.
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1. Introduction

The fundamental properties of wave dislocations [1] receive a growing attention due to a
rapid experimental progress in generating various singular optical beams as well as their many
promising applications [2, 3, 4]. A number of different techniques for generating optical vor-
tices have been realized, among which the use of computer-generated holograms [5] and spiral
phase plates [6] have found the widest application. However, these methods often limit both the
efficiency and quality of generated optical vortices, and these issues become particularly impor-
tant for vortices in nonlinear media [7] as well as for singular beams created by broad-spectrum
femtosecond pulses or partially coherent and polychromatic light [8].

New exciting opportunities of the singular optics are foundin the use of anisotropic optical
crystals [9, 10, 11, 12]. Because of topological propertiesof the polarization singularities [13],
which appear when the light beam strongly diffracts in a birefringent crystal, a stable generation
of singular beams of a complex structure, topological multipoles, is possible from a Gaussian
beam [14]. Additionally, the propagation of an initially scalar vortex in a birefringent crystal
leads to the so-called vortex unfolding into different types of polarization singularities [15].
While topological multipoles consist of several spatially separated vortices, the double-charge
vortex beam can be generated from a circularly polarized Gaussian beam [16].

In this paper, we suggest and implement a novel method for generating single-charge optical
vortices. We study the propagation of initially linearly polarized beam in an uniaxial crystal
and subsequent formation of a topological quadrupole, i.e.the structure of four vortices with
alternating unit charges. We demonstrate that single-charge vortices can be generated if the
beam is tilted in a specific direction with respect to the crystal axis. This technique allows also
for generation of white-light vortex beams without any additional modifications.

2. Topological quadrupole: theory vs. experiment

We consider the propagation of a light beam along the opticalaxis z > 0 of a homogeneous
crystal described by a dielectric permeability tensor in the formε̂ = diag(εi j), whereε11 = ε22 =
ε andε33 = ε3. In the paraxial approximation, the evolution of a slowly varying envelope of the
transverse electric fieldE(x,y,z) =

{

Ex,Ey
}

is governed by the vectorial equation [17, 18]:

∇2
⊥E+2ik

√
ε∂zE = α∇⊥ (∇⊥E) , (1)

whereα = ∆ε/ε3 and∆ε = ε3− ε. For beams propagating along the optical axis, these equa-
tions can be solved analytically [14], however small deviations from the on-axis propaga-
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tion significantly complicates the problem. Therefore, we solve Eq. (1) numerically using the
pseudo-spectral method and fast Fourier transform.

We consider the propagation of a Gaussian beam with thex-linear polarization at the in-
put (z = 0). During its propagation in the crystal, the beam becomes elliptically polarized (y-
polarized component appears), as follows from Eq. (1). The beam total intensity preserves its
Gaussian shape while the intensities ofx- andy- polarization components of the beam undergo
a drastic change. Figures 1(a,b) illustrate the intensity and phase of thex-polarized component
at the output facet of the crystal. We observe four characteristic intensity zeros which appear
symmetrically on the ring surrounding the beam origin. One of these zeros from the right top
quarter is also depicted in Fig. 1(b) by the contour lines with the background colors propor-
tional to the values of the phase, from−π (blue) toπ (red). The clockwise growth of the phase
by 2π indicates the presence of a vortex with the topological charge−1. The four vortices in
Fig. 1(a) have alternating topological charges and they form a topological quadrupole.

Fig. 1. Numerically calculated (a) intensity and (b) phase profiles of thex-polarized field
componentEx(x,y, l) from Eq. (1) withα = 0.07; l ≈ 6 mm is the crystal length. The movie
(quadrupol, 1.1MB) demonstrates the formation of a topological quadrupole in (a) during
beam propagation. (c) The polarization map of the total transmitted fieldE(x,y, l) with el-
lipses of the left-hand (red) and right-hand (blue) polarizations indicatedby their main axes.
Blue ellipse and red triangle indicate the ‘monstar’ and ‘star’ polarization singularities.

To uncover the physical origin of the phase singularities which appear during the propagation
of an initially smoothx-polarized beam, in Fig. 1(c) we present a map of the polarization states
of the total field in the vicinity of the vortex core from Fig. 1(b). The polarization ellipses with
different handedness cover most of the area (red and blue regions) while polarization became
linear on the so-calledL-line between these regions. There are two isolated singular points
in Fig. 1(c), theC-points, where the field is circularly polarized. These points are enclosed
by peculiar patterns [13, 19] indicated by ellipse and triangle in Fig. 1(c). Using analytical
results for the field distributions [14] and the method to determine the positions and the types
of C-points developed by M. Dennis [20], we identify ourC-points as the ‘monstar’- and the
‘star’-type polarization dislocations, respectively.C-points are associated with optical vortices
because one of the circularly polarized components vanishes while its phase is undefined. Such
vortices can be selected from a vector field by a polarizationfilter which can suppress either the
right-hand or the left-hand circular polarization [16, 21].

If we connect two neighboringC-points of the star and monstar by a straight line in Fig. 1(c),
this line will cross theL-line at the point with they-polarization, an isolated point where the
x-polarized component vanishes. The phase of thex-component is shown in Fig. 1(c) by the
contour lines forming the characteristic “spider” patternwith uncertainty at the central point. If
we select the singularEx component of the field with a polarizer placed behind the crystal, we
will effectively convert the polarization singularity into an optical vortex. Thus, only a polarizer
is sufficient to select four optical vortices composed into atopological quadrupole [14, 22].
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Fig. 2. Experimental setup: laser 1; polarizers 2,6; lenses 3,5; sapphire crystal 4; CCD
camera 7; computer 8; white-light source 9; collimator 10; pinhole filter 11.

To prove our theoretical predictions experimentally, we employ the setup shown in Fig. 2.
The beam from a cw laser 1 (λ = 532 nm) passes through a polarizer 2 and is focused by a
lens 3 into a 6mm long Al2O3 crystal along its optical axis. The beam is than collimated by the
lens 5 and passes through a second polarizer 6parallel to the first one. A color CCD camera
registers the intensity distribution in the computer 8. Typical intensity pattern for the topolog-
ical quadrupole is shown in Fig. 3(a); we note the excellent agreement with the numerically
calculated image in Fig. 1(a). An appropriate choice of the focal length of lens 3 (f = 3 cm)
enables us to suppress to a great extent additional vorticeslocated at the periphery of the beam
[slightly visible in Figs. 1(a) and 3(a)], so that the beam carries a topological quadrupole only.
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Fig. 3. Experimentally measured (a) intensity distribution of the linearly polarized topolog-
ical quadrupole and (b) the intensity levels in the vicinity of the single-chargevortex in the
right top quadrant of the plot (a).

3. Single-charge monochromatic vortex

The structure of each vortex nested in the quadrupole differs from an ideal radially symmetric
vortex, as shown in Figs. 1(b) and 3(b). To examine this structure more closely, we note that the
field Ex has a number of phase singularities with azimuthal coordinatesϕ = ±π/4, ±3π/4,
located on rings with radiirp =

√

(2p+1)π/a, found from the conditions ReEx = 0 and
ImEx = 0, herea = k∆n/l, ∆n ≈ noα/2 with no = 2, and p = 0,1,2, ... Variation of the
beam waist at the planez = 0 enables us to find the beam pattern at the crystal output such
that it corresponds to the beam bearing a single topologicalquadrupole on the ring with
r2
0 = π/a. The field in the vicinity of an isolated singularity withϕ0 = π/4 can be writ-

ten asEx ∝ x′ + y′ − i2(x′ − y′)/π, wherer′ = r − r0. The lines of the equal intensity near
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the singularity have an elliptical shape with the main axes tilted by 45◦ (see Figs. 1 and 3),
|Ex|2 ∝ (x′ + y′)2/4+ (x′ − y′)2/π2, which can be characterized by the degree of ellipticity,
Q = 2/π ∝ 0.64. The vortex deformation depends neither on the crystal nor the beam parame-
ters, and it represents a geometrical constraint of the crystal-generated beams. From the exper-
imental data shown in Fig. 3(b) we measure a relief of the beamintensity near the vortex core
and find the ellipticityQexp = 0.71 which is close to the theoretical value of 0.64.
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Fig. 4. Experimentally measured (a,b) intensity and (c) interferogrammof a single-charge
monochromatic vortex generated by the beam tilted with respect to the crystal axis at an
angleΘ ≈ 1.4◦. Corresponding movie (single.avi, 2.4MB) demonstrates the process of the
vortex generation as the beam propagates through the crystal.

Furthermore, we demonstrate that a single-charge vortex can be isolated from the quadrupole
by propagating the optical beam under a small angle to the optical axis of the crystal,Θ = r0/l =
√

π/(∆nk l). For this angle, the centre of the beam at the output matches the positionr0 of one
of the optical vortices in the quadrupole. The experimentalresults presented in Fig. 4, show a
distinct intensity minimum at the beam axis. Such a minimum does not necessary guarantee the
presence of a phase singularity because for a tilted beam theordinary and extraordinary polar-
ization components propagate in different directions due to birefringence. The phase singular-
ity is confirmed by interference of the output and a plane reference beam. The interferogram
[Fig. 4(c)] bears a fork pattern characteristic for a single-charge optical vortex. The numerical
simulations (see the movie in Fig. 4) demonstrate that a single-charge optical vortex can be
indeed formed at the output facet of the crystal if the inclination angle is properly adjusted for
a given crystal length. While the vortex in numerical simulations is strongly deformed, a visual
comparison of the vortex in a topological quadrupole in Fig.3(b) and the isolated vortex in
Fig. 4(b) shows that the vortex quality is greatly improved in the later case.

4. Single-charge polychromatic vortex

To generate a polychromatic vortex we employ a partially spatially coherent white-light source.
We use an ordinary incandescent 50W lamp with a tungsten filament (0.5×2mm). The lamp
is placed into a spherical reflector 9 (see the inset in Fig. 2). The radiation is directed into a
collimator and then projected onto a diffuser of a lusterless glass to blur the image of the fil-
ament. The scattered light is then focused by a lens withf = 4cm into the spatial filter with
an inner diaphragm to adjust the degree of spatial coherenceof the beam. In our experiments,
the diaphragm radius is about 1mm. The beam divergence behind the spatial filter is about 15◦

indicating very low spatial coherence. The beam then passesthrough the polarizer 2, and is fo-
cused by the lens 3 withf = 3cm onto the crystal. The transmitted radiation is collected by the
lens 5 and passes through a polarizer into the CCD camera. Figure 5(a) shows an experimental
image of the singular beam, which major feature is the rainbow-like distribution of colors near
the beam axis. This is in contrast to the earlier reported generation double-charge white vortex
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with the origins coinciding for all wavelengths [16, 21]. This phenomenon is explained by a
chromatic dispersion of light rays transmitted at some angle to the optical axis [8]. Figure 5(b)
shows the transverse intensity profiles for the three basic colors: red (R), green (G), and blue
(B), which clearly indicates that the intensity minima for different colors are located at different
points. As a result, the vortex core is blurred, and it gains arainbow coloring.
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Fig. 5. Spatially strongly incoherent polychromatic vortex beam: (a) intensity, (b) intensity
cuts for three main colours, and (c) the chromoscopic vortex image.

The presence of phase singularities is normally detected using interferometric experi-
ments [3, 23, 24]. However, the low spatial coherence of our beam makes such measurements
difficult. Therefore, to confirm the presence of a phase singularity, we apply the method sug-
gested by Berry [25]. With this method, we record the RGB image of the polychromatic vortex
beam and equalize the tint intensities by applying a colour normalization at each pixel of the im-
age accordingly to the expression(R,G,B)T ⇒ (R,G,B)T /max(R,G,B). The resulting image,
calleda ‘chromoscopic’ image [25], is shown in Fig. 5(c). A white line in the distribution of the
colour tints inside a vortex core separates two groups of colours, blue and red; the appearance
of this line proves the presence of a polychromatic optical vortex.

5. Conclusions

We have suggested and demonstrated a novel experimental technique for generation of mono-
and polychromatic single-charge optical vortices by manipulating polarization singularities in
birefringent crystals. We first studied the generation of a topological quadrupole by sending
a linearly polarized light through an uniaxial crystal along its optical axis. We analyzed the
properties of the quadrupole beam and found that its four constituent vortices are elliptically
deformed. Tilting the input beam at a specific angle to the crystal optical axis, we generated
mono- and polychromatic beams with single-charge optical vortices. The quality of an iso-
lated vortex core is essentially improved in comparison to alocal vortex within the topological
quadrupole. However, in contrast to the on-axis circularlypolarized double-charge white opti-
cal vortex [16, 21], the linearly polarized single-charge vortex attains a rainbow colouring due
to the chromatic dispersion. The vortex colouring is definedmainly by the spectral properties
of the initial beam, and it depends weakly on its spatial coherence.
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