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Abstract. The nature of the anisotropy in magnetic systems which show isotropic Heisenberg exchange is
crucial in determining their magnetic properties. This is particularly true in low-dimensional systems in
which the very existence of long-range order depends on the anisotropy. The honeycomb lattice MnPS3
system has been studied as an example of a magnetically quasi-two-dimensional system of unusual symme-
try. In this paper the effect of the dipole—dipole interaction in MnPSs on the magnetic ordering is explored
through modelling. It is found that the dipolar anisotropy can explain the spin directions both in zero
field and above the spin flop phase transition, but it is important that real rather than idealised atomic
coordinates are used; this latter consideration is significant because in performing theoretical calculations,
it may sometimes be assumed that small deviations away from the ideal can be ignored, but in truth they

determine key aspects of the behaviour.

1 Introduction

Low-dimensional magnetism allows theoretically tractable
models to be realised experimentally, for example the On-
sager solution to the 2D (two-dimensional) rectangular
Ising model [1]. Much of the study has centred on sys-
tems such as XoYFy (X = Rb or K and Y = Mn, Co
or Ni for example [2,3] and on the Cu-O planes in high
temperature superconductors and their parent compounds
[4]. In these materials the 2D lattice is square and the ¢
axis is perpendicular to the 2D magnetic planes, unlike in
MnPSs;.

MnPS;3 is a layered quasi-two-dimensional Heisenberg
antiferromagnet on a honeycomb lattice. The structure
is monoclinic and the in-plane coordination number is 3,
meaning that MnPS3 is a system whose symmetries are
quite different from those of other 2D magnetic materials.
It has been studied in the context of hydrogen sorption
[5], fundamental magnetism [6], and a range of interca-
lation reactions, including the effect of intercalation on
magnetism [7-9].

The unit cell parameters are a = 6.077 A, b = 10.524
A, c=6.769 A and 3 = 107.35° [10]. The space group is
C2/m. The Mn?* ions lie at fractional coordinates (0, y, 0),
(3,3 —9.0), (0,1 —y,0) and (%, 3 +y,0) with yyp, ~ 3.
The crystal structure is shown in figure 1 and shows the
honeycomb arrangement of Mn atoms, the Py dimers and
the layers of sulphur atoms that sandwich the Mn/P lay-
ers. There is a van der Waals gap between these sandwich
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Fig. 1. The crystal structure of MnPS3. Large green spheres
are S, blue are Mn and the P2 pairs are indicted by the dumb-
bells [11].

structures resulting in very little orbital overlap between
atoms on either side of the gap, meaning that both direct
exchange and super-exchange are weak, contributing to
the 2D magnetic properties and giving the crystals highly
anisotropic structural behaviour.

Its experimentally determined magnetic phase diagram
has been outlined [12] and its magnetic structure has been
explored as a function of applied magnetic field and com-
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position [13,14]. They key orderings observed in MnPSg
are that at low T the spins are collinear, perpendicular to
the ab planes (that is, they point in the ¢* direction), an-
tiferromagnetically correlated within the plane (with each
spin surrounded by three nearest neighbour spins of oppo-
site sign) and ferromagnetic along c. Above Ty (78 K) the
system is paramagnetic. When a magnetic field is applied
along the spin direction ¢*, a spin flop phase transition
takes place [15] such that the spins lie in the ab planes.
The magnitude of field required varies with temperature,
and when flopped the spins lie (anti)parallel with the b
axis [13]. The antiferromagnetic correlations remain un-
changed in the spin flop state; it appears to be a rotation
of the spin structure from ¢* to b. At 5 K, the spin flop
field is found to be 4.7 T [12]. It might be expected that
the ground state of the honeycomb lattice with the dipo-
lar interaction would be non-collinear [16]; however, the
system possesses exchange interactions which are much
stronger than the dipolar interaction. In this work it is
therefore taken that the (isotropic) exchange interactions
determine the direction of each spin relative to its neigh-
bours (in other words, hold the system collinear) and the
anisotropy then determines the direction of this collinear
structure relative to the unit cell axes. This then allows
dipolar calculation to be used as a means of determining
the preferred spin direction, without the need to calculate
the contribution of the exchange, which is taken to be
isotropic and therefore will not vary as the spin structure
is rotated as a whole. This evolution of the structure is also
supported by neutron diffraction measurements which can
be well fitted by a collinear spin structure both in the zero
field and spin flop states [13].

Very detailed measurements of the spin waves and crit-
ical properties of MnPS3 have thrown much light on its
behaviour but have not been able to show the nature of
the anisotropy governing the phase-transition behaviour
[17,18,6]. The exchange interactions have also been estab-
lished, with ab-plane exchange values being J; = —8.9K
(nearest neighbour (NN); number of such neighbours, Z; =
3), Jo = —0.8K (second NN, Zy = 6) and J3 = —2.1K
(3NN, Z3 = 3). First neighbour exchange between planes
is given as J, = 0.022K (Z, = 2)[17,18,6], or J, =
0.022kp ~ 3 x 107%5].

Measurements suggest that below Ty the system shows
2D anisotropic Heisenberg (2D AH) critical behaviour (with
XY-like rather than Ising-like critical exponents), with a
crossover to 3D for T' 2 0.97Ty [18]. The magnetic struc-
ture in zero applied field at 5 K is shown in figure 2, which
shows the antiferromagnetic in-plane correlations. .

As Mn?t is a spherical ion and expected to show little
single-ion anisotropy, dipole—dipole interactions have been
considered as mechanisms for the ordering [19,15]. It has
been shown that this gives rise to ordering perpendicular
to the ab plane [15], but also concluded that it cannot
be the sole effect, as the observed spin wave gap implies
a much smaller anisotropy [6]. Hence it has been shown
that there is a single ion anisotropy, Kg, weaker than the
dipolar and tending to push the spins to lie in the planes.
This is most likely a crystal field effect, and in MnPSg

is weaker than the dipolar anisotropy. Here, the dipolar
anisotropy is explored in some detail to gain insight into
the ordering mechanisms in MnPS3.

2 The Modelling

Because the spin structure remains antiferromagnetically
correlated, real-space dipolar summation can be performed
with good convergence, and a sum over a sphere of radius
250A was used (although convergence was tested empiri-
cally by performing a handful of extremely large simula-
tions out to over 1000A radius). The expression for the
potential energy of a pair of magnetic dipoles, p1 and ps,
in which the distance between north and south poles is
negligible compared to the separation, r, is [20]

3(p1-r)(p2 - r)
r5

M1 - 2
3

U

(1)

For ST units this expression is multiplied by pg/47. The
dipolar energy of a spin is obtained by summing over all
such interactions out to the sum radius and dividing by
two, since equation 1 gives the energy of a dipole pair,
whereas the final sum is to give the energy of a single
dipole in the field caused by all its neighbours.

At low temperatures, p = 4.5up [13]. This summation
was performed for 3D systems of spins for a range of values
of the parameter (, whose definition is outlined below.
This allows exploration of the effect of the deviation away
from ‘ideal’ hexagons of the honeycomb lattice.

There are two Mn—Mn ‘type’ of nearest neighbour vec-
tor present in the crystal structure. Figure 2 shows these,
labeled A and B. If they have lengths dy and dp then
these can be written

dp = (1= 2ynm)|b|

(5 ((t-me))

and the deviation of the honeycomb away from ‘ideal’
(dp = dp could be parameterised by the difference or
ratio of these two distances, suggesting that a useful defi-

nition might be
(=dp/dp. (4)

¢ will be driven away from unity by changing ypp, or by
changing |b|/]al.

(2)

and

(3)

2.1 Results of Modelling

For both the idealised structure ¢ = 1 and the observed,
¢ ~ 1.007, the dipole—-dipole energy was found to be a
minimum when the spin direction was collinear with c*,
as is observed in experiment. This minimum was located
through a simple, relatively coarse grid search whose pa-
rameters were the angles (in spherical coordinates) that
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Fig. 2. The two types of inter-ionic vector between Mn atoms
in the ab plane, A and B. In zero applied field and T < T,
the magnetic ordering is such that if the filled circles represent
spins parallel to ¢*, the open circles represent spins antiparallel
to ¢*. The dashed lines and a and b axes outline the ab plane
of the unit cell.

the spins made to the a and ¢* axes. When the approx-
imate position of the minimum had been established by
the coarse search, a finer gridded search was performed to
locate the minimum more precisely.

The anisotropy energy leads to an estimate of the spin
flop field through [21]

[ 2K
Bgf=,— 5
sf X1 —X| (5)

where K is the anisotropy energy and the susceptibili-
ties are taken from experiment, for example [12,15]. Given
that the minimum energy configuration occurs when the
moments are directed (anti)parallel to ¢*, the dipolar anis-
otropy preferring the moments to point along c* is here
labeled K.«. K.~ is taken to be the difference between
the internal dipolar energy of the spin configuration cal-
culated with spins parallel to ¢* and the internal dipo-
lar energy of the spin configuration calculated with spins
perpendicular to ¢* (in other words, in the ab plane) and
pointing along the in-plane direction that minimises their
energy. In other words, K.~ is equal to the difference be-
tween the global minimum (pointing along c¢*) and the
minimum when restricted to the ab plane. 3D summation
leads through equation 5 to By ~ 8.2T.

This value is approximately 1‘8Bsf(0bserved) which

accords with the idea that there is a second anisotropy
pushing the moments into the planes, resulting in a spin
flop field less than that calculated. On the assumption that
this is a single ion anisotropy of some kind, it is referred
to as Kg

A second factor is the dependence of the anisotropy
energy on (. Figure 3 shows a plot of K.« as a function of
¢. It shows that the degree of idealisation of the structure
in the calculation has a noticeable if small effect on the
magnitude of dipolar anisotropy, but more significantly on
the direction the spins would prefer if lying in in the ab
plane, as for example in a spinflop transition.

When a sufficiently large magnetic field is applied along
c* the spins ‘flop’ and lie in the ab plane. When this occurs,
the spin correlation structure (the arrangement of white
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Fig. 3. The dependence of the main dipolar anisotropy, K=,
on (. For some values the minimum in-plane energy is achieved
when spins are along b (circles), for others when spins are along
a (triangles). Solid vertical line indicates ¢ = 1, dashed vertical
line indicates ¢ as it is observed in the real structure.

and black circles in figure 2) remains unchanged [13], but
now the moments are (anti)parallel to some in-plane di-
rection.

Figure 3 shows that for ( > 1 the lower-energy in-
plane spin direction is b while for { < 1, the lower-energy
in-plane spin direction is a. The dashed line indicates the
value of ¢ from experiment [10] and it shows that the mo-
ments are expected to prefer the b axis. This is what is
experimentally observed [13]. This is strong evidence that
the dipole—dipole interaction is indeed governing the na-
ture of the magnetic ordering, at least at temperatures
far below Ty. This also leads to defining a second dipolar
anisotropy — the difference in energy between the pre-
ferred in-plane (ab plane) spin direction and the in-plane
direction perpendicular to that. This is referred to here as
K,p. Figure 4 plots K, against ¢ for a 3D summation.

It has been shown that above T the system does likely
show XY-like critical behaviour, with a crossover to 3D be-
haviour very close to T, and that the correlation length
follows the Kosterlitz-Thouless behaviour [22]. As the in-
plane correlation length diverges, the weak inter-plane ex-
change couplings compound and the system orders in 3D.
At the same time, the lengthening in-plane correlations
allow the dipolar interaction to come about, as it depends
upon the existence of the magnetic long-range order. As
soon as the dipolar interaction becomes significant, K«
will align the moments with ¢*, meaning that K, will be
insignificant and will not affect the XY-like nature of the
fluctuations. K is contingent upon there being moment
in the ab plane, which is why it would be very interesting
to measure the critical exponents of MnPS3 while apply-
ing a strong (~ 7T) magnetic field along c¢*, a field well
above the maximum value of the temperature-dependent
spin flop field.

It may be considered that the value of K, indicated
by the dashed line in figure 4 is effectively zero, being of
magnitude approximately 1x1072%J spin—!. However, this
is of a similar scale to the inter-plane exchange interaction,
J1 as determined by magnon dispersion measurements
[17] of J ~ 3x 10725 spin~!. Hence at low temperatures
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Fig. 4. The anisotropy within the ab plane (K,) as it depends
on ( for a dipole summation performed in 3D.

and when the spinflop forces a large component of the
spins into the ab plane, it is reasonable to expect this
anisotropy to have some influence — such as selecting the
in-plane spin direction, which does indeed seem to be the
case.

Single-ion anisotropy terms are typically parameterised
by expressions of the form Kg = DS?, where the key as-
pect here is that S, enters in with power 2. If the single
ion anisotropy in MnPSs is modelled by a term similar
to this which tries to constrain the spins to the ab plane,
then in qualitative terms, both it and the dipolar energy
will scale, approximately, with the square of the Brillouin
function for S = 5 (because S enters into Ky as a square
and p enters into K- as i1 - pi2), then taking x 1 — x| from
experiment [12,15], a plot of the trend of By against T
can be constructed (figure 5). This plot shows that the
temperature dependence of the two anisotropies appears
to give a good model for the T" dependence of Bgg for tem-
peratures below ~ 0.8T. If the summing of Kg and K«
is allowed to explain the magnitude of By, then much of
the significant behaviour is captured.

As the system warms up experiment shows that the
magnitude of By increases [12]. This is largely the result
of a decrease in the difference x| — x. The solid curve in
figure 5 suggests that By should start to fall as Ty is ap-
proached. For pure MnPS3 the critical region proved too
narrow for the resolution of the magnetometry to observe
this, and the row of solid dots continues to increase. How-
ever, the reduction in By as T" approached Ty has been
observed in Mn,Zn;_,PSs3 for z = 0.8 and = = 0.5 [12],
suggesting that perhaps it does occur in MnPS3 but over
a narrower temperature range than this model suggests.

An attempt has been made to explore the dependence
of K.+ on pressure. Recent work by Toyoshima et al. [23]
has shown that the spin flop field decreases at a rate of
4.0 x 103 Oe/GPa, or about 8%/GPa as pressure is ap-
plied. Due to the van der Waals gap, the c axis is expected
to change much faster than a or . The microscopic dis-
tortion of the unit cell associated with the application of
pressure is not known. Therefore three simple models of
the effect of pressure on the magnetic anisotropy were ini-
tially explored: (1) reduce the length of ¢, leaving other
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Fig. 5. The temperature dependence of the spin flop field mod-
elled by using the Brillouin function for S = g to give the
temperature dependence of the dipolar energy and using the
observed temperature dependence of x1 — x|

parameters unchanged (2) reduce |¢| and modify § such
that the a-axis component of ¢ is maintained and (3) in-
crease (3.

Of these approaches, (1) and (2) caused the dipolar
anisotropy to increase, while (3) caused it to decrease, but
very slowly, such that no reasonable increase in G could
model the magnitude of decrease in Byt observed in [23].

As a last model, it was posited that pressure might
cause ab layers to slide over each other parallel to the ab
planes and along the a axis. Such a model was tested by
adding a randomly generated offset to the a-coordinate of
each layer in the structure. Qualitatively, it was found that
this could also reduce the dipolar anisotropy, but again the
magnitude of reduction was too small.

The inability of any of these structural modifications
to give a decrease in the dipolar anisotropy sufficient to
explain the results presented in [23] suggests that the pres-
sure is instead influencing the single ion anisotropy. This is
quite plausible because if Ky is coming from crystal field
effects and the Mn?* environment is being compressed,
which will be relatively easy along ¢, then inter-atomic
distances will be decreasing, an effect which is expected
to increase the electric field at the Mn site and increase
any single-ion anisotropy. Since Kg favours in-plane spins,
this would have the effect of reducing Bgy.

3 Conclusions

The magnetic ordering observed in MnPS3 at tempera-
tures below ~ 0.8y is well explained by the dipole-dipole
interaction, which provides a mechanism for preferring the
observed low temperature zero field and spin flop spin con-
figurations. Dipolar anisotropy gives a good order of mag-
nitude estimate for the spin flop field, although requires
the existence of a second anisotropy because it does over-
estimate the magnitude of the spin flop field.
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At low temperatures and for small moment deviations
away from the ¢* axis, the system lies in a potential well
due to the dipolar anisotropy, and the well is close to
isotropic for moment deviations in the ab plane because
it is only as the moment components in the plane be-
come large that the in-plane dipolar anisotropy manifests
itself. This could easily in concert with the posited XY-
like single-ion anisotropy give rise to XY-like (or perhaps
anisotropic Heisenberg) critical fluctuations, leaving the
¢* components of the moments largely unaffected.

Given the deviation of the honeycomb lattice of Mn?*
ions from regularity (¢ = 1, see equation 4) and the sym-
metry in three dimensions of the crystal structure, the
dipolar interaction in real MnPS3 can never give a system
which is isotropic in the ab plane. There will always be a
preferred spin direction, but it only manifests itself when
significant moment lies in the ab plane. However, because
the moment components in this plane are small unless the
spin flop phase is induced, this in-plane anisotropy has lit-
tle effect on the critical properties. While at temperatures
close to Ty there will be substantial components in the
plane due to thermal fluctuations, the magnetic ordering
will not be maintained and so the dipolar energy will not
follow the behaviour calculated here, which assumes the
observed collinear structure is homogeneously rotated into
the plane, something which is known to be true of the spin
flop state from neutron magnetic scattering studies.

Measurement of critical scattering in the spin flop phase
could shed light on the mechanisms governing order in
MnPSs3, as in the spin flop state the in-plane anisotropy of
the dipolar interaction is manifested, potentially changing
the symmetry of the system, which should be observable
in the critical behaviour.
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