Selective trapping of multiple particles
by volume speckle field
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Abstract: ~ We suggest a new approach for selective trapping of light
absorbing particles in gases by multiple optical bottle-beam-like traps
created by volume speckle field. We demonstrate stable simultaneous
confinement of a few thousand micro-particles in air with a single low-
power laser beam. The size distribution of trapped particles exhibits a
narrow peak near the average size of an optical speckle. Thus, the speckle-
formed traps act as a sieve with the holes selecting particles of a similar size.

© 2010 Optical Society of America

OCIS codes: (350.4855) Optical trapping, optical manipulation

References and links

1

2.

3

4.

15.

. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42-55 (2008).

. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426,

421-424 (2003).

. J.Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature
Photon. 2, 675-678 (2008).

. A.H.J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of
nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71-75 (2009).

. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing
particles,” Adv. Quant. Chem. 30, 469-492 (1998).

. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, “Optical manipulation of
airborne particles: techniques and applications,” Faraday Discuss. 137, 335-350 (2008).

. D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. Mec-
Gloin, “Fiber based optical trapping of aerosols,” Opt. Exp. 16, 14550-14560 (2008),
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550.

. J.B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481,
153-165 (2009).

. E.J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phe-
nomena, (Springer, 2002), pp. 780-785.

. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40,
455-457 (1982).

. S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, “Exper-
imental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser
Light,” Appl. Phys. B 47, 247-250 (1988).

. J. Steinbach, J. Blum, and M. Krause, “Development of an optical trap for microparticle clouds in dilute gases,”

Eur. Phys. J. E 15, 287-291 (2004).

T. B. Jones, Electromechanics of Particles (Cambridge University Press, NY, 1995).

#120050 - $15.00 USD  Received 17 Nov 2009; revised 25 Jan 2010; accepted 25 Jan 2010; published 28 Jan 2010

©

2010 OSA 1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 3137



16. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar,
“Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743-5757 (2009),
http://www.opticsinfobase.org/oe/abstract.cfm?URI=o0e-17-7-5743

17. A.S.Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, “Photophoretic manipulation
of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17,8201-8211 (2009),
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8201

18. E.R.Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic
optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).

19. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt.
Express 13, 5831-5845 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=o0e-13-15-5831.

20. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the
optical bottle beam,” Opt. Lett. 25, 191-193 (2000).

21. N.Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.
279,229-234 (2007).

22. V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Gen-
eration of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902-20907 (2008),
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20902

23. L.Isenhower, W. Williams, A. Dally, and M. Saffman, “Atom trapping in an interferometrically generated bottle
beam trap,” Opt. Lett. 34, 1159-1161 (2009).

24. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts and Co., CO, 2007).

25. V. Shvedov, W. Krolikowski, A. Volyar, D. Neshev, A. Desyatnikov, and Yu. Kivshar, “Focus-
ing and correlation properties of white-light optical vortices,” Opt. Express 13, 7393-7398 (2005),
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7393

26. A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies,
“Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation,” Appl.
Surf. Science 197-198, 644-649 (2002).

27. A.V.Rode, E. G. Gamaly, and B Luther-Davies, “Formation of cluster-assembled carbon nano-foam by high-
repetition-rate laser ablation,” Appl. Phys. A 70, 135-144 (2000).

28. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Z. Krolikowski, and Y. S. Kivshar, “Optical
Pipeline for Transport of Particles,” in Optical Trapping Applications, OSA Technical Digest (CD) (Optical
Society of America, 2009), paper OTuC4, http://www.opticsinfobase.org/abstract.cfm?URI=0OTA-2009-OTuC4

29. M. Born and E. Wolf, Principles of Optics (7th Ed., Cambridge University Press, 2003).

30. A.V.Rode, S.T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, “Structural analysis of a
carbon foam formed by high pulse-rate laser ablation,” Appl. Phys. A 69, S755-S758 (1999).

31. K. O’Holleran, M. R. Dennis, and M. J. Padgett, “Topology of Light’s Darkness,” Phys. Rev. Lett. 102, 143902
(2009).

32. S.Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in rarefied gas,” Phys. Fluids
A'5,2043-2052 (1993).

33. A. B. Pluchino, “Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser,” Appl. Opt.
22,1861 (1983).

1. Introduction

Since the pioneering work of Ashkin [1] optical trapping and manipulation of particles by laser
beams became indispensable tool in different fields of science. Most of the concepts for optical
control [2,3] and sorting [3—6] of microscopic particles are based on the radiation pressure of
light. At the same time, the radiation pressure acting on airborne absorbing particles [7], in
contrast to transparent aerosols [8§—10], can be diminished by photophoretic forces [11].

The idea of utilizing inhomogeneous laser-induced heating in gases and employing pho-
tophoretic forces for trapping of particles was suggested some years ago [12—14]. Photophoretic
forces are caused by interaction of molecules of the surrounding gas with the heated surface of
a particle. Gas molecules reflected from a hotter side of the particle acquire higher speed than
those reflected from a colder side and, as a result, the particle acquires a net momentum [15]. In
spite of those earlier ideas, stable trapping of absorbing particles in air has been achieved only
recently in a new trap created by two counter-propagating optical vortex beams [16,17]. The
corresponding light intensity distribution retains an axial symmetry with vanishing intensity at
the beam center creating a stable attractive potential for absorbing particles. The distinct feature
of this trapping geometry is that particles are trapped in the region of the minimum intensity of
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diffuser lens focal image

Fig. 1. Experimental setup. The diaphragm D on the diffuser is imaged by the lens to a
cigar-shaped trapping region as shown by a (green) image of the speckled intensity pattern.

light; this ensures their low heating and weak perturbation.

Recent development of holographic traps [18, 19] and the concept of an optical bottle
beam [1] with a vanishing intensity surrounded by light in all three dimensions [20-22] have
attracted a lot of attention as a hollow area of such beams can be employed for simultaneous
trapping of a large number of particles and atoms [23].

In this paper, we demonstrate that a speckle pattern [24] generated by a coherent laser beam
forms an ideal three-dimensional web of multiple traps that may be employed to capture a large
number of micron-sized particles. We present the experimental results on simultaneous pho-
tophoretic trapping of several thousands of carbon particles in randomly distributed speckles.
Our results show clear advantages of this new three-dimensional trapping strategy that com-
bines the confinement of massive numbers of airborne particles by a single laser beam with the
ability to select the size of captured particles in narrow margins.

The paper is organized as follows. In Sec. 2 we outline our experimental approach for se-
lective trapping of absorbing particles in air. Section 3 summarizes the results on the optical
trapping by speckle fields that allow us to realize multiple low-intensity optical bottle-beam
traps with stable confinement of a few thousand airborne micro-particles with a single low-
power laser beam. Finally, Sec. 4 concludes the papers and gives some further perspectives for
the development of the method.

2. Experimental approach

In our experimental setup, shown in Fig. 1, a beam from cw laser (Verdi 5, Coherent, A =
532 nm) illuminates a ground glass diffuser (Thorlabs DG10-1500) with the diffusion angle
20 = 6° FWHM. The imaging lens with a focal length of f = 25 mm and aperture D, = 23 mm
is placed at the distance zop = 140 mm from the diffuser. Similar to a partially coherent vortex
beam [25], the overall intensity distribution after the lens is cigar-shaped, as can be deduced
from scattered light in Fig. 2(a). As a result, the laser spot of the diameter D = 2.6 mm at
the diffuser is reduced to D, = 570 4 m in the image plane [Fig. 2(b)] located at a distance
zg = 30.4 mm from the lens, with the transmitted power of P = 115 mW. The trapping vol-
ume is enclosed inside a glass cuvette filled with carbon particles. It consists of many three-
dimensional bright speckles separated by the dark “micro-bottle traps”. The trapping area is
imaged from the side [Fig. 2(a)] and along the beam axis [Fig. 2(b)], using white light passing
through a notch filter.
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Fig. 2. Geometry and dynamics of particle trapping. (a) Image of the laser light scattered
from the particles trapped in the speckled bottle beam, the axial view in (b) is obtained
with the help of additional white-light illumination. A few thousands particles are captured
simultaneously in the cigar-shaped trapping region of length L = 6.5 mm and diameter
Dj, = 570 um. (c-e) Temporal evolution of the selective optical trapping, see Media 1.
The trap is being gradually populated with particles captured in the dark regions of the
speckle pattern. The inverse process, i.e. the clearing of the trap from particles when power
is gradually reduced, can be seen in Media 2.

For optical trapping we use agglomerated carbon nanoparticles, the so-called carbon
nanofoam [26,27]. The nanofoam typically consists of particle agglomerates of irregular shape
and size in the range from few nanometers (single nanoparticle) up to 100 micrometers with
no apparent preferential size. When nanofoam is introduced into a glass cell, most of carbon
particles initially suspended in air settle down on the cell walls within 30 minutes to an hour.
When the laser beam is switched on, as seen in Figs. 2(c-e) and Media 1, the suspended parti-
cles entering the trapping area are reliably captured at the random speckle locations. When the
population of the trap is saturated, as in Fig. 2(e), the particles remain trapped for practically
unlimited time, up to 24 hours in our experiments. When laser power is reduced, some parti-
cles are released from the trap, the dynamics is shown in Media 2. The remaining particles are
trapped firmly at any fixed power above the threshold P, as long as the laser is on. In a repre-
sentative experiment shown in Fig. 2 the trap is totally cleared of particles at P, = 28.9 mW.

The trapped particles are collected for further analysis on a silicon substrate. To avoid con-
tamination of the sample and ensure that the particles on the substrate come from the trap only
we collect particles when any free particles suspended in air are absent, usually about an hour
after the laser trapping started. The particles collected on the substrate are subsequently ana-
lyzed with a scanning electron microscope (SEM); typical SEM images are shown in Figs. 3(a-
¢). Random sampling of 100 trapped particles under SEM reveals that the average linear size is
(d) = 2.0 um with standard deviation 0.6 m, and a corresponding size distribution is presented
in Fig. 3(d). About 80% of particles are within the confidence interval of d =2.0 0.6 um.

3. Optical trapping by speckle fields

In a striking contrast with our previous experiments [16, 28], where the variation of trapped
particles size extended over three orders of magnitude, d = 0.1 — 100 um, the distribution in
Fig. 3(d) indicates a selective mechanism of the trapping by a speckle beam. Below we present
a theoretical analysis, which shows that the speckle fields acts as a sieve, with the most efficient
trapping of particles of a size similar to the characteristic transverse size of individual speckles.
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Fig. 3. Analysis of the particles from the speckle trap. (a-c) Scanning electron microscope
images of agglomerates of carbon nanoclusters collected from the trap: the area with five
particles marked by a white square in (a) is magnified in (b) and the arrow shows one of the
particles in (c). (d) A histogram with the size distribution of trapped particles. The green
color represents the standard deviation range. (¢) Computer modeling of speckle intensity
distribution for a small volume, 5 x 5 x 15 m?, inside the trapping region. Blue surfaces
enclose high-intensity speckles; voids correspond to the dark (low-intensity) bottle-traps;
the green spheres represent trapped particles of diameters 1.5 um (left) and 2 um (right).

First, we recall the theoretical background of speckle pattern formation [24] as the inter-
ference of random coherent wavefronts formed by reflectance off or scattering by an irregular
surface of the incident wave. In our experiments, the spatial structure of the diffraction pattern
is determined by the aperture of the exit pupil of the optical system [29], the lens diaphragm of
the diameter D,, in our case. The averaged speckle sizes in the transverse, (€, ), and longitudi-
nal, (g.), directions, determined by the first zeros of corresponding correlation functions [24],
are given by

(1) =2.442 (;”

a

2
>:1.7/.Lm and () = 16 (g) — 14.9um. (1)

For direct comparison, we numerically model the speckle pattern as a coherent superposition
of 1000 plane waves with equal amplitudes, random phases, and transverse wave-vectors k dis-
tributed randomly inside the circle, |k| < kmax. The radius of the disk-shaped angular spectrum
is determined by the angular radius of the aperture as seen from the observation plane, namely
kmax = koD /2z, = 0.3783kg, here the wavenumber ko = 27/A. As seen in Fig. 3(e), the char-
acteristic transverse and longitudinal sizes of cigar-shaped speckles and their dark counterparts,
the micro-bottle traps, agree well with the average estimates in Eq. (1). The threshold trapping
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power in a single speckle pmi, can be estimated as ppin = Pnin/N = 0.3 UuW, here Py is the
measured above total threshold beam power and N is the number of speckles in the transverse
plane, N = Dj /(g )? ~ 1.1 x 10°.

Next, we examine the balance of forces acting on the particle, required for stable three-
dimensional trapping in air. In particular, we assume that transverse photophoretic force com-
pensates gravitation, F| > mg = 4.1 x 107'® N, here m = npd>/6 = 4.2 x 107'* g is the
mass of a spherical particle with the diameter d = 2 um and mass-density of nanofoam, p =
10 mg/cm? [30]. Since, on average, each dark speckle is associated with an optical vortex [31],
we can simulate the transverse intensity envelope of a micro-bottle by a vortex beam profile
used in Ref. [17] to calculate the transverse photophoretic force, F| ~ 8kpR(d)*/3(e, )*. Here
p is the laser power in a single speckle, R is the shift of the particle centre from the point of
zero intensity, and k = 8.5 x 1077 s/m is the parameter describing transfer of momentum from
air molecules to carbon nanofoam [17,32]. According to our calculations in Ref. [17] the force
F,| attains its maximum for particles at the distance R ~ (g, )/4. It follows that the optical
power required to balance gravitation is p > 3.6 nW, two orders of magnitude lower than the
experimental threshold power pp,. The reason for this discrepancy lies in the presence of dis-
turbances stronger than he gravitational force, such as interaction between particles, via local
perturbations of the laser field induced by the particles themselves [33], as well as convective
air flows. The latter can move particles easily upward, as clearly seen in Media 1 and Media 2.

The experimentally measured most probable size of trapped particles, (d) = 2.0 um, corre-
sponds to the average transverse speckle size, (€, ) = 1.7 um, with good accuracy. In agreement
with experiments on trapping with vortex beams [16] the size of the trapped particles is limited
from above by the characteristic size of the micro-trap. An additional selective feature of speck-
led light is that the voids in the intensity pattern have complex topological arrangement [31]
through which smaller particles can escape. As a result, the distribution in Fig. 3(d) sharply
declines for smaller particles, d < 2 um, and proves that each speckle acts as a selective micro-
trap. The selection can be performed by tuning the laser wavelength or by varying the numerical
aperture of the focusing optics.

4. Conclusion and perspectives

We have suggested and demonstrated experimentally a new approach for stable three-
dimensional multiple trapping of absorbing particles in air using a single laser beam. The mul-
tiple traps are induced by a speckle pattern with a multitude of micrometer-size bottle-beams
created by optical singularities in each individual speckle. This work demonstrates a new way of
multiple trapping, precise sorting, and guiding of massive numbers of light-absorbing particles
in air and other gases, which so far remained beyond the abilities of conventional laser-trapping
systems. While the presented here experimental demonstrations have been conducted with only
one type of absorbing particles, the theoretical analysis suggests a possibility of trapping other
absorbing substances in any gas environment. Finally, the ability of selective trapping, guiding
and separation of suspended particles in air by non-contact optical means opens up a variety of
applications for laser trapping of matter in gaseous environment.
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