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Abstract: We report on the experimental and theoretical investigation of
polarization conversion of linearly polarized Gaussian beam propagating
in perpendicularly cut homogeneous uniaxial crystals. We derive analytical
expressions, in good agreement with experimental data, for power transfer
between components at normal incidence accompanied by the generation
of a topological quadrupole. We extend the results to the oblique incidence
case and confirm experimentally the optimal parameters for generation
of a single charge on-axis optical vortex, including spectrally resolved
measurements for the white-light beams.
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1. Introduction

Circulating flows of electromagnetic energy, or optical vortices, appear in laser beams carrying
phase singularities [1]. Fundamental properties and potential applications of optical vortices
have attracted growing attention during last decade [2, 3]. A number of different techniques
for generating optical vortices has been realized, among which the use of computer-generated
holograms [4] and spiral phase plates [5] found the widest application. However, the capacity
of anisotropic media to affect the polarization state of light can also be used to generate op-
tical vortices in homogeneous [6–9] or inhomogeneous [10, 11] uniaxial crystals. In addition,
phase singularities in scalar components, linearly or circularly polarized, are connected with
polarization singularities of the total field [12–15] and their propagation dynamics and related
topological reactions allow the observation of complex single- and multi-vortex beams [16–19].

Generation of optical vortices with uniaxial crystals has several advantages with respect to
the most common strategies used in practical situations. Indeed the optical power limitation as-
sociated to computer-generated holograms, which is mainly due to inherent low diffraction effi-
ciency of diffractive optical elements, is naturally overcome when using transparent birefringent
crystals. On the other hand, the narrow spectral bandwidth constraint of spiral plates, which are
basically designed for a well-defined wavelength, is intrinsically removed when dealing with
the spin-to-orbital angular momentum coupling in anisotropic materials whose spectral depen-
dence scales as the birefringence dispersion. In fact, both high optical power and spectrally
broadband behavior are of importance when applications in nonlinear singular optics [20–22]
and optical micro-manipulation [23,24] are envisaged. However, while the efficiency of gener-
ation of the double-charge vortices can reach 50% using homogeneous uniaxial crystals over a
broad spectral range [7, 25], the necessary conditions and limitations for generation of isolated
single-charge vortex beams [26] remain unexplored.

In this paper we derive and analyze the solution of the paraxial wave equation for the on-axis
and tilted linearly polarized fundamental Gaussian beams propagating in uniaxial crystals. We
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theoretically discuss the propagation dynamics and efficiency of polarization conversion in both
cases and compare our predictions with experimental data. In particular, we derive the condi-
tions for generation of the on-axis isolated single charge vortex in the case of oblique incidence
and demonstrate that the generation efficiency can reach 75%. We also explore the influence of
crystal chromatic dispersion on generation of white-light optical vortices, namely the relative
shift of beams and rainbow coloring due to wavelength-dependent diffraction effects [26–28].

The paper is organized as follows. We first describe the general theoretical framework and
the experimental setup in Sec. 2. Section 3 is then devoted to the normal incidence case and the
generation of topological quadrupole. The single-charge isolated vortex beams are discussed in
Sec. 4 and Sec. 5 summarizes the results.

2. Theoretical and experimental approaches

2.1. Paraxial solution

Let us consider the propagation of a light beam along the optical axis z of an uniax-
ial crystal, with transverse part of the complex envelope of the electric field of the form
E(x,y,z)exp(−iωt + iknoz), where ω is the frequency of light with time t, k = 2π/λ is the
wavenumber in free space with the wavelength λ , and no is the ordinary refractive index of
the crystal. Then, from Maxwell’s equations, the well-known paraxial wave equation can be
derived, assuming a slowly varying transverse envelope E,

(
∇2
⊥ +2ikno∂z

)
E = γ ∇⊥ (∇⊥ ·E) , (1)

where ∇⊥ ≡ ex ∂x +ey ∂y and γ = 1− (no/ne)2 with ne the extraordinary refractive index of the
crystal.

A modal solution, E(x,y,z) = c+E+(u,v,z) + c−E−(u,v,z), is conveniently obtained in
the basis of circular polarizations, c± = (ex ± iey)/

√
2, and in terms of the variables

(u,v) = x ± iy. It reads E(s) = (c+∂u ∓ c−∂v)Φ(s), with the generating function satisfying
(
iβs∂z +∂ 2

uv

)
Φ(s) = 0, which naturally introduces the fundamental Gaussian solution Φ(s)

0 =
G(s) ≡−(iβsw2/Zs)exp(iβsuv/Zs). Here Zs = z− iβsw2 and w is the beam waist at the crystal
input facet z = 0. The signs ∓ in expression for E(s) correspond, respectively, to the index s ≡ o
for the ordinary (TE) mode with βo = kno/2, and s ≡ e for the extraordinary (TM) mode with
βe = kn2

e/2no.
Above formulation was directly used in Ref. [25] for the particular case of a circularly polar-

ized incident Gaussian beam at the crystal input facet, namely E(r,z = 0) = E0 exp(−r2/w2)c±
where r =

√
x2 + y2. Here we extend this method for normally and obliquely incident lin-

early polarized Gaussian beams. The linearly polarized solutions are straightforwardly ob-
tained from the circularly polarized by transformation of the basis, ex = (c+ + c−)/

√
2 and

ey = −i(c+ − c−)/
√

2. As an example, in the case of normal incidence, one obtains the fol-
lowing general solution for an incident linear polarization along x axis [6, 16, 18, 19], i.e.
E(r,z = 0) = E0 exp(−r2/w2)ex,

Ex =
E0

2

{
G(e) +G(o) + cos2ϕ

[
G(e) −G(o) +

i
r2

(
Ze

βe
G(e) − Zo

βo
G(o)

)]}
, (2)

Ey =
E0

2
sin2ϕ

[
G(e) −G(o) +

i
r2

(
Ze

βe
G(e) − Zo

βo
G(o)

)]
, (3)

where ϕ is the polar angle in cylindrical coordinates. More generally the input linearly po-
larized Gaussian has an arbitrary polarization plane defined by the angle ϕ0, E(r,z = 0) =
E0(cosϕ0 ex + sinϕ0 ey)exp(−r2/w2), so that the solution above is given for ϕ0 = 0. For the
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Fig. 1. Top row: intensity distributions I‖ = |E‖|2 of the field polarized parallel to the inci-
dent Gaussian beam (ϕ0 = 0) with the waist w = 4.6 μm in calcite crystal (no = 1.656 and
ne = 1.485 at λ = 633 nm). Bottom row: cross-sections along x (red dashed curves) and y
(black solid curves).

y-polarized input beam, ϕ0 = π/2, the solution is given by Eqs. (2, 3) with Ex ↔ Ey and
ϕ → π/2−ϕ . The general solution is obtained as a linear superposition and a convenient ex-
pression is written in terms of the linearly polarized components parallel and perpendicular to
the polarization of the incident field, E‖ = Ex cosϕ0 +Ey sinϕ0 and E⊥ =−Ex sinϕ0 +Ey cosϕ0.

2.2. The small birefringence limit

Although the exact solution is explicitly known and is easy to compute numerically, a simple
and useful representation can be derived in the limit of small birefringence. In fact, we note
that uniaxial crystals have usually weak birefringence, |no − ne| 	 10−3 − 10−1, so that the
anisotropy can be considered as a perturbation. Introducing the average refractive index n =
(no + ne)/2 and the small parameter ε = (no − ne)/n 
 1 we obtain βo 	 β (1 + ε/2) and
βe 	 β (1−3ε/2), where β = kn/2. Expanding the expressions given by Eqs. (2, 3) with respect
to ε and keeping only the terms of the leading order in ε we derive the following approximate
representation for the general solution in the case of linearly polarized input Gaussian beam at
normal incidence, (

Ex

Ey

)
	 E0GM̂

(
cosϕ0

sinϕ0

)
, (4)

where G =−(iβw2/Z)exp(iβ r2/Z) with Z = z− iz0 and z0 = βw2. The electric field amplitude
E0 at z = 0 is related to the total input power P0 = πw2E2

0/2. The propagation matrix is given
by

M̂ =
(

cosδ − isinδ cos2ϕ −isinδ sin2ϕ
−isinδ sin2ϕ cosδ + isinδ cos2ϕ

)
, (5)

with complex δ = εβ r2 z/Z2. Solution in this form is valid everywhere in the crystal if
the anisotropy is small, ε 
 1. Applying this limit below we will also use the following
dimensionless coordinates: ρ = r/w and ζ = z/z0, so that δ = εζ [ρ/(ζ − i)]2 and G =
(1+ iζ )−1 exp[−ρ2/(1+ iζ )].
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Fig. 2. Experimental setup. L1,2: lenses or microobjectives; PBS: polarization beamsplitter;
CCD: charge coupled device cameras; o.a.: optical axis, whose orientation is defined by
the two angles α and ψ as shown in the inset. Intensities I‖ = |E‖|2 and I⊥ = |E⊥|2 for (a)
normal and (b) oblique (see text for details) incidences, at the propagation length z = 6 mm
for input beam waist w = 4.6 μm in (a) and w = 11 μm in (b); in both cases λ = 633 nm.
Intensity distribution in panels (a,b) are false colored.

It is convenient in the following to operate with “parallel” and “perpendicular” components
(

E‖
E⊥

)
	 E0G

(
cosδ − isinδ cos 2(ϕ −ϕ0)

−isinδ sin 2(ϕ −ϕ0)

)
, (6)

in particular the parallel component acquires characteristic discrete set of zero intensity points
– the topological quadrupole – see Fig. 1, top row. Note also that the usual transverse spreading
associated with Gaussian beam divergence is anisotropic, in contrast to the case of isotropic
media, which is due to different angular divergences of the ordinary and extraordinary waves
[Fig. 1, bottom row].

2.3. Experimental setup

In our experiments we used uniaxial calcite crystal slabs that are cut perpendicularly to the
optical axis into 10× 10× z mm3 samples for z = 1 . . .10 mm with step of 1 mm, where the
optical axis lies in the z direction. The setup is summarized in Fig. 2 and it is similar for
both monochromatic or polychromatic light experiments, except for the preparation of the light
beam. For the monochromatic case a linearly polarized light from He-Ne laser operating in the
fundamental Gaussian mode at the wavelength λ = 633 nm is used whereas a quasi-Gaussian
light beam is obtained from a halogen lamp with power 50 W and angular divergence 8◦ in
experiments with white light. In the latter case, the polychromatic light from the lamp passes
first through the bundle of optical fibers (with aperture 5 mm) and then through an infra-red
filter which limits the spectral range to 440− 800 nm. The beam is collimated, after passing
through a spatial filter, thereby attaining a nearly Gaussian intensity profile and polarization is
made linear (E0) using a broadband birefringent polarizer. As shown in Fig. 2, the input beam
(mono- or polychromatic) is focused onto the crystal by a first lens, or microobjective, L1, and
is further collimated by a second one L2. The output beam passes through a polarizing beam-
splitter (PBS) that separates the linearly polarized components parallel (E‖) and perpendicular
(E⊥) to the incident beam polarization; their transverse intensity profiles are recorded on CCD
video cameras.

The inset in Fig. 2 shows the geometry of crystal tilting, with ψ and α being the azimuthal
and polar angles, respectively, that describe the optical axis orientation with respect to the
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Fig. 3. Polarization conversion with respect to the normalized propagation distance in the
case of normal incidence for λ = 630 nm and ε = 0.109. Solid red lines: numerical inte-
gration of exact solution (2, 3), and dashed blue lines: approximate formulas (7).

beam propagation direction. For normal incidence, i.e. α = 0 and ψ = 0, the characteristic
intensity patterns of coupled linearly polarized components are given by Eqs. (2, 3) and shown
in Fig. 2(a). For a tilted crystal, there is a specific set of parameters (α0(z),ψ0(z)), when at the
distance z the beam acquires a on-axis single-charge vortex [26], with characteristic intensities
in Fig. 2(b) obtained by direct integration of Eq. (1).

Finally, for polychromatic light the following dispersion law for ordinary and extraor-
dinary refractive indices of calcite will be used in theoretical analysis, no = (2.69705 +
0.0192064/(λ 2 − 0.01820) − 0.0151624λ 2)1/2 and ne = (2.18438 + 0.0087309/(λ 2 −
0.01018)−0.0024411λ 2)1/2 where λ is expressed micrometers.

3. Normal incidence: topological quadrupole

3.1. Efficiency of polarization conversion

Experimentally accessible quantities to retrieve the propagation dynamics are the powers of
orthogonally polarized field components at the output of a crystal with thickness z, P‖,⊥(z) =
∫∫ | E‖,⊥(x,y,z) |2 dxdy. We use Eqs. (6) to explicitly calculate these powers in the limit of
small birefringence ε 
 1,

P‖(ζ ) = P0 −P⊥(ζ ), P⊥(ζ ) =
P0

4
ε2ζ 2(1+ζ 2)2

ε2ζ 6 +(1+ζ 2)2 , (7)

P⊥(ζ 
 1) 	 P0

4
ε2ζ 2, P⊥(ζ � 1) 	 P0

4
ε2ζ 2

1+ ε2ζ 2 , (8)

in excellent agreement with exact numerical results, see Fig. 3, where P0 is an input beam
power.

Note that the parameters of the crystal (and their dispersion) enter these expressions through
ε(λ ) while the use of normalized distance ζ allows to reveal the universal character of
polarization conversion independently from the input beam waist w, see Fig. 3. It appears
that the monotonous power conversion between linearly polarized components saturates at
P⊥/P‖ → 1/3 as ζ → ∞. In contrast, for circular input polarization the output power ratio of
circular orthogonally polarized components tends to unity [6, 25]. Obviously, there is no con-
tradiction, which can be checked recalling that a linear polarization state may be described by
the superposition of two coherent orthogonal circular polarization states with equal weights.

The experimental propagation dynamics of the polarization conversion for monochromatic
light in the normal incidence case is presented in Fig. 4. The ratio P⊥/P‖ is measured as a
function of z for w = 1.8 (black squares), 4.4 (red circles) and 11.2 μm (blue triangles) and
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Fig. 4. (a) Ratio P⊥/P‖ as a function of the crystal thickness for three different waists
for λ = 0.6328 μm. Solid lines: theory; markers: experiment; black: w = 1.8 μm; red:
w = 4.4 μm; blue: w = 11.2 μm. (b) Power ratio P⊥/P‖ as a function of z/w2 for the data of
panel (a), the markers and the solid curve being respectively experimental data and theoret-
ical prediction. The panels (1,2) correspond to the intensity distribution I‖,⊥, respectively,
and refer the set of parameters of the data indicated by the arrows in panel (a). Similarly,
the panels (3,4) correspond to another set of parameters, see panel (a).

shown in Fig. 4(a). In all cases this ratio grows from zero to the expected asymptotic value 1/3.
While the multipole structure is not present for the lower power conversion efficiencies [see
Fig. 4, panel (1)], larger conversion rate correspond to well-developed edges dislocations and
multipole pattern for the perpendicular and parallel output ports, respectively [see Fig. 4, panels
(3,4)]. We notice that the four panels shown in Fig. 4 can readily be compared visually since
care was exercised to have identical maximal intensity values whatever are the values of crystal
thickness and beam waist. These results are in good quantitative agreement with the predictions
of the model that are represented as solid curves in Fig. 4(a).

The universal feature of polarization coupling unveiled in Fig. 3 is also confirmed experimen-
tally, as demonstrated in Fig. 4(b) where P⊥/P‖ is plotted as a function of z/w2 = βζ . Clearly,
the rescaled data presented in Fig. 4(a) lies on the single calculated universal curve, which was
recovered for waists values that almost (to a few percent) correspond to those experimentally
extracted from asymptotic beam divergence measurements.

3.2. Vortex trajectories

It was shown recently that a single-charge on-axis optical vortex can be generated by tilting
the incident linearly polarized beam with respect to the optical axis [26]. This is achieved by
selecting one of the direction that corresponds to the single charge vortices location in the
topological quadrupole at the crystal output facet. Below we explore in detail these locations
for different parameters of the monochromatic beam as well as for polychromatic light.

The simplified analytical description of the problem in the limit of small birefringence [see
Eqs. (6)] gives a convenient way to locate and characterize quantitatively the single charge
optical vortices embedded in the field component whose polarization is parallel to the one of
the incident beam, namely E‖ = 0. Introducing the real and imaginary parts, δ (ρ,ζ ) = A+ iB,
we derive from Eqs. (6)

cosA(coshB+ cos2(ϕ −ϕ0)sinhB) = 0, (9)

sinA(sinhB+ cos2(ϕ −ϕ0)coshB) = 0, (10)

with A = ερ2ζ (ζ 2 − 1)/(1 + ζ 2)2 and B = 2ερ2ζ 2/(1 + ζ 2)2. Since B ≥ 0 we have 0 ≤
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Fig. 5. Trajectories of single charge vortices which are the closest to the optical axis in
reduced coordinates. (a-c) Distance from the optical axis ρ0. (d-f) Polar angle ψ0 in the
(x,y) plane for ϕ0 = 0. Blue curves: analytical expressions Eqs. (11, 12); dashed curves:
asymptotes Eqs. (13, 14), and red curves: exact results Eqs. (2, 3).

tanhB < 1 and it follows from Eq. (9) that cosA = 0. Equation (10) thus gives cos2(ϕ −ϕ0) =
− tanhB. We define the solutions to Eqs. (9, 10) as ρ ≡ ρ0(ζ ) and ϕ ≡ ψ0(ζ ), see Fig. 5. Re-
stricting our considerations to the singularities that are the closest to the optical axis we obtain
(in the interval −π ≤ ϕ ≤ π and with ϕ0 = 0)

ρ0 =
√

π
2ε

ζ 2 +1
√

ζ |ζ 2 −1| , (11)

ψ0 = sign(m)
{

(1−|m|)π +
1
2

arccos

[
− tanh

(
πζ

|ζ 2 −1|
)]}

, (12)

where m = ±1,±2. Such trajectories are shown in Fig. 5(a, d) where the dashed lines corre-
spond to asymptotic behavior for ζ 
 1 and ζ � 1,

ρ0 	
√

π
2εζ

for ζ 
 1 and ρ0 	
√

πζ
2ε

for ζ � 1, (13)

ψ0 	
{
−3π

4
,−π

4
,

π
4

,
3π
4

}
for ζ 
 1 or ζ � 1. (14)

In addition, we determine the positions of field zeros using exact solution Eq. (2, 3). Corre-
sponding radius ρ0 (b, c) and the angle ψ0 (e, f) are shown in Fig. 5 for short (b, e) and long (c,
f) propagation distances (or crystal lengths). Note the differences with approximate solutions
in (a, b): the exact asymptote ρ0 	 3.907

√
ζ is very close to

√
πζ/2ε 	 3.798

√
ζ and the

exact limit ψ0(ζ → ∞) → 0.235π in contrast to the approximate value 0.25π (for m = 1). Also
noteworthy is that vortices disappear in a small region around ζ ∼ 1, as seen in shaded area in
Fig. 5(b, e), through complex series of topological reactions; the details of this process can be
easily reproduced by visualizing exact solution Eq. (2, 3).

The trajectories of individual single charge optical vortices embedded into the topological
multipole in the case of normal incidence are retrieved by analyzing the intensity patterns
I‖(x,y), see Fig. 2(a), as a function of the crystal thickness. From a practical point of view,
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Fig. 6. (a) White light multipole at normal incidence for different propagation distance z
inside the crystal (z =2, 6 and 10 mm). (b) Multipole spectral components, red (630 nm),
green (550 nm) and blue (440 nm), for a crystal slab with fixed thickness 6 mm. (c) Angle
defining the optical vortices trajectories as a function of the propagation distance for three
different wavelengths; symbols: experimental data, solid curves: results from Eq. (15).

the minimal available thickness z = 1 mm leads us to investigate the asymptotic region ζ � 1,
see Eq. (13). The trajectory is conveniently described by the inclination angle of individual
optical vortex with respect to the optical axis, tanα0 = r0/z = ρ0/(ζ βw). In the small angle
approximation, α0 
 1, it reduces to

α0 	
√

λ
2z(no −ne)

. (15)

Experimentally, the external (output) angle αout
0 is obtained by measuring the distances d1

and d2 between two diametrical vortices [see Fig. 6(a,b)] for two different positions, z1 and
z2, of a screen placed at the output of the crystal after the lens L2 has been removed (Fig. 2).
Such a procedure gives tanαout

0 = (d2 −d1)/2(z2 − z1). We found that αout
0 decreases with the

propagation distance and increases with the wavelength. The corresponding results for three
different wavelengths in the visible spectrum are summarized in Fig. 6(c) where the compar-
ison using Eq. (15) is shown (solid curves) taking into account the refraction condition at the
output interface, αout

0 = sin−1 (nsinα0). The agreement between theory and the experiment is
excellent.

4. Oblique incidence: solitary vortices

4.1. Vortex trajectories

The model previously developed in the case of normal incidence can be extended to the tilted
geometry where the optical axis now makes an angle α with the z axis in the meridional plane at
an angle ψ from the (x,z) plane (see Fig. 2). For the purpose of demonstration we will consider
a Gaussian beam linearly polarized along the x axis, i.e. ϕ0 = 0. In order to benefit from the
matrix formalism given by Eqs. (4, 5) it is convenient to introduce the cylindrical coordinates
(r′,ϕ,z′) as illustrated in Fig. 7, which corresponds to the case ψ = 0.

Assuming α 
 1 and thereby neglecting the associated modifications of the matrix M̂, we
simply need to account for the tilted nature of the reference Gaussian beam G in Eq. (4). From
Fig. 7 we see that ψ = 0 and ϕ = 0 lead to z′ = �1 + �2 with �1 = zcosα and �2 = r sinα . The
generalization to any (ψ,ϕ) is easily done by the transformation �2 → �2 cos(ϕ −ψ) and using
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Fig. 7. Illustration of the titled geometry for the uniaxial crystal in the (x,z) plane.

r′2 + z′2 = r2 + z2. We thus obtain

z′ = zcosα + r cos(ϕ −ψ)sinα, (16)

r′2 = r2 [
1− cos2(ϕ −ψ)sin2 α

]− r zsin2α + z2 sin2 α. (17)

With these new set of variables, the Eqs. (6) can be used to describe the oblique incidence case
by using the transformation G(r,z) → G(r′,z′). In particular, for a given crystal length z, the
choice of ψ = ψ0 from Eq. (12) and α = α0 from Eq. (15) allows to derive the expressions for
the fields with the on-axis single charge vortex.

When the beam waist is large enough, it is possible to observe a well-defined on-axis single
charge vortex at the output of the crystal, see Fig. 8. However, this requires a careful adjustment
of the optical axis with respect to the beam propagation direction, α = α0. Any departure from
this critical incidence angle leads to an alteration of the resulting vortex, which eventually es-
capes from the beam for significant misalignment. Such an angular selectivity is experimentally
illustrated in the upper part of Fig. 8 where λ = 632.8 nm and w = 11 μm. For example, if α0

is chosen for a particular crystal length, z = 7 mm in Fig. 8(a), the vortex is essentially distorted
at other propagation lengths. On the other hand, for a fixed propagation length z = 6 mm in
Fig. 8(b), which corresponds to ζ ∼ 10, we see that an angular offset of few tenth of degree
is enough to completely lose the vortex from the output beam. Furthermore, when comparing
the experimental data to simulations we found that the coordinates of phase singularities in
the quadrupole, derived in Eqs. (11), (12), and (15), do not exactly correspond to the optimal
experimental parameters. In the numerical simulations which were performed using Eq. (1) we
used ψnumerical

0 = 0.95ψapprox
0 , where ψapprox

0 is given by Eq. (12), in agreement with the asymp-
totic mismatch between numerical and approximate solutions,

(
ψnumerical

0 /ψapprox
0

)
ζ�1 	 0.96,

(see Sec. 3.2 and Fig. 5(f)). Moreover, we had to use αnumerical
0 = 0.865αapprox

0 , where αapprox
0

is given by Eq. (15), and we found a systematic experimental deviation from the optimal po-
lar angle for the vortex direction, namely αexperiment

0 −αnumerical
0 	 0.1◦. The latter discrepancy

is therefore likely due to a residual experimental inaccuracy rather than asymptotic mismatch
between numerical and approximate solutions since

(
αnumerical

0 /αapprox
0

)
ζ�1 	 1.04 (see Sec.

3.2).

4.2. Efficiency of polarization conversion

The polarization conversion dynamics in the tilted geometry (with α = α0 and ψ = ψ0) has
an interesting and unexpected behavior. This is illustrated in Fig. 9 where the results obtained
for the white light source are presented. Comparison between the rainbow-colored intensity
profiles in Fig. 9(a) with the numerically obtained contour lines in Fig. 9(b) shows good qual-
itative agreement. Since the input angles α0 and ψ0 where chosen optimal for specific spectral
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(b)(a)
α = 0.64°                0.80°                    0.88°

Fig. 8. Experimental (top row) and numerical (bottom row) results for generation of single-
charge vortex beam, λ = 632.8 nm and w = 11 μm. Output intensity patterns I‖ for (a) three
propagation lengths z for an internal angle α = 0.81◦, and (b) different internal angles α
with crystal length z = 6 mm. The experimental angles in (b, top) also take into account
the refraction at the input interface of the crystal. Numerical results in panels (a,b) are false
colored.

component (red with λ = 630 nm), other components propagate slightly offset, so that the
vortex positions are noticeably shifted with respect to each other, e.g. see Fig. 6(c), which is
mainly due to the

√
λ dependence of α0, see Eq. 15, rather than the dispersion of the birefrin-

gence no(λ ) and ne(λ ) in the expression for α0. Indeed we estimate Δ
√

λ/
√

λ ∼ 28% whereas
Δ(no −ne)−1/(no −ne)−1 ∼ 9% over the visible range 400–700 nm.

The powers in three main spectral component are measured for different crystal lengths, see
Fig. 9(c). In that case, for each crystal length z, the angles α0 and ψ0 were adjusted to obtain a
on-axis single charge vortex beam with the best possible quality. The relative powers are defined
by the input spectrum, however, the behavior of any the quasi-monochromatic wavelength,
or total power of the white-light beam, is normalized to the corresponding input power, the
differences between spectral components is almost identical, as shown in Fig. 9(d). Note that
the asymptotic behavior P⊥/P‖ → 1/3 is clearly observed for large propagation lengths, similar
to the case of topological quadrupole in Figs. 3 and 4. However, the first stage of the propagation
dynamics shown in Figs. 9(c, d) is drastically different from the case of normal incidence. It
seems that P‖ → 0 for z → 0 which obviously contradicts our initial condition P‖(z = 0) = P0.

To answer this controversy we numerically integrate Eq. (1) for the parameters used in ex-
periment, the results are shown in Figs. 9(e, f). For the red spectral component we calculate
the z-evolution of powers for the set of crystal lengths L = (1, ...,10) mm with 1 mm step with
the input parameters α0(L) and ψ0(L). The corresponding propagation dynamics are shown
in Fig. 9(e, black lines) where the values at z = L are indicated with black circles. It is seen
that the power P‖ first rapidly decays from its initial value P0, even below the level P0/2 for
the small crystal lengths, in sharp contrast with monotonous power decay for quadrupole in
Fig. 3. With increase of L the power P‖ progressively reaches the asymptotic value 3P0/4. As a
result, the envelope of this process, the red curve in Fig. 9(e), approaches the asymptote from
below, P‖ < 3P0/4, as observed experimentally, see Fig. 9(d). The differences between three
main spectral components are small, as shown in Fig. 9(f), that is also in good agreement with
the experimental data in Fig. 9(d).

Interestingly, one could conclude from the asymptotic behavior that the tilted geometry is
able to generate an optical vortex with 75% efficiency [see Fig. 9(b)], which is better than the
50% efficiency obtained from spin-orbit coupling in the normal incidence case with circularly
polarized input beam. However, recalling that the present situation lead to a charge one vor-
tex (associated with ±h̄ orbital momentum per photon) and that the circular case involves a
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Fig. 9. Output intensity profiles I‖ (upper line) and I⊥ (bottom line) for (a) experimental
data and (b) patterns calculated using Eq. (1). Note the relative shift of spectral components
visible in the contour plots in panels (b), which explains the rainbow coloring of intensities
in panels (a). Experimental spectrally resolved power measurements in (c) and (d), where
solid (dashed) curves refer to P‖ (P⊥), are compared with numerical results in (e) and (f)
for an input Gaussian beam with w = 6 μm. In panels (c,d,f) the color labeling is red, green
and blue for λ = 630, 550 and 440 nm, respectively.
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charge two vortex (respectively associated with ±2h̄ momentum), the overall net generation of
orbital angular momentum per photon is more favorable in the circular polarization interaction
geometry. Moreover, we notice that for large crystal thicknesses, the output beam in the tilted
case eventually leads to an off-axis multipole structure, whose total orbital angular momentum
results from the non trivial superposition of single charge phase singularities having alternating
signs and that is beyond the scope of the present work.

5. Conclusions

We derive and analyze the solution of the paraxial wave equation in uniaxial crystals for two
distinct cases: the generation of topological quadrupole at the normal incidence of linearly
polarized Gaussian beam and the generation of a single charge on-axis optical vortex at oblique
incidence. We have theoretically and experimentally investigated the dynamics and efficiency of
polarization conversion inside a uniaxial crystal. In both cases the efficiency of the polarization
conversion reaches 25% for long crystals, i.e. the efficiency of the generation of optical vortices
approaches 75%. However, at small crystal lengths there are significant differences, in particular
the efficiency of single vortex generation can be below 50%. We derive the optimal parameters
for single vortex generation in the case of oblique incidence with taking into account physical
features of uniaxial crystal, including chromatic dispersion of the crystal and the parameters
of an input beam power. We expand the results to the case of white-light beams. In particular,
we show the angle variation defining the individual optical vortices trajectories in multipole
as a function of the propagation distance for three different spectral components. We found
that this angle decreases with the propagation distance inside the crystal and increases with the
wavelength. Our results will serve as a practical guide in using uniaxial crystal for generation
of singular beams for various applications.
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