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We employ a variational technique to describe the propagation of a Gaussian beam in a nonlinear, weakly
nonlocal medium and derive the conditions for breathing soliton formation in both one and two transverse
dimensions. The reduced one-dimensional results agree quantitatively with known exact nonlocal soliton
solutions. We subsequently formulate a simple procedure for estimating the strength of a weak nonlocality and
verify its applicability by direct numerical simulations.
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I. INTRODUCTION

The nonlinear response of a medium to an external action
is spatially nonlocal when it depends not only on the action
in the particular point, but also in the neighboring points. In
a plasma the processes of heating and ionization are known
to cause a nonlocal response �1�. The long lifetime of opti-
cally pumped atoms allows the atomic diffusion to transport
the excitation away from the location of the laser �2�. Drift
and/or diffusion of photoexcited carriers lead to a nonlocal
response in photorefractive materials �3,4�. Spatial nonlocal-
ity in the nonlinear response is also present in Bose-Einstein
condensates exhibiting long-range interparticle interactions
�5,6�. This is also the case of nematic liquid crystals when
the elastic intermolecular forces result in a refractive-index
change extending well beyond the excitation region �7�. Fi-
nally, the heat conduction in materials with thermal nonlin-
earity leads to nonlocal changes in their refractive index
�8–10�. Not that obvious, the analogy between parametric
interaction in quadratic media and nonlocal cubic media
�11,12� has led to the understanding that quadratic and non-
local Kerr solitons are equivalent �13�. Finally, recent works
on light localization in soft matter such as colloidal nanosus-
pensions pointed out the inherently nonlocal character of
nonlinearity �14�.

It is worth mentioning that while typically spatial nonlo-
cality is considered to be symmetric, transverse symmetry
can be broken by anisotropic boundary conditions �10�.

The nonlocal character of the nonlinearity can be often
described in terms of the so-called nonlocal response func-
tion which determines the spatial extent of the nonlocality.
The width of this function relative to the spatial scale of the
wave intensity profile determines the degree �strength� of the
nonlocality, �� �15�. In the local limit, the response is just a
� function. In the highly nonlocal limit the beam evolution is
described by a linear equation with the potential determined
by the spatial structure of the response function �16,17�.
While typically the evolution of a wave in a nonlocal me-
dium has to be treated numerically in a few cases such as for
the logarithmic nonlinearity, an exact analytical treatment is
also possible �18�. Recent studies of nonlinear effects in non-

local nonlinear media include exact analytical solutions for
one-dimensional bright and dark solitons for weak nonlocal-
ity �19�, and the prediction of the existence of stable ring
vortex solitons in self-focusing media in the regime of strong
nonlocality �20,21�, as well as the demonstration of a dra-
matic effect of nonlocality on both interaction forces be-
tween dark spatial solitons �22� and soliton mobility in opti-
cal lattices �23�. Because of the crucial importance of
nonlocality in many nonlinear phenomena, its characteriza-
tion and influence on the beam propagation are of a great
practical interest �24�.

In this work we study theoretically the propagation of
optical beams in weakly nonlocal nonlinear media using the
variational technique. We show that this approximate method
allows for a very accurate description of the formation of
nonlocal solitons and their dynamics. Moreover, it also forms
the basis of a simple experimental procedure for estimating
the strength of weak nonlocality.

II. THEORETICAL MODEL

Let us consider a phenomenological model of a nonlinear
Kerr-type medium, in which �see Fig. 1� the refractive index
n�=n+�n(I�x ,y ,z�) changes with intensity I�x ,y ,z� in a
nonlocal way:

'

FIG. 1. Left: Gaussian intensity profile I�x� �solid curve� and
response function R�x−x�� �dashed curve� of respective widths
� /�2 and wR=0.1� /�2. The weakly nonlocal limit corresponds to
wR��. Right: normalized distribution of the nonlinearly modu-
lated refractive index for a local response �solid curve� and for
degrees of nonlocality wR /�=0.2 and 0.4 �long- and short-dashed
curves, respectively�.
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�n„I�x,y,z�… = �n0�
−�

�

R�x − x�,y − y��I�x�,y��

�dx�dy���
−�

�

R�x�,y��dx�dy�. �1�

If the width wR of the real and symmetric response function
R�x� ,y�� is much shorter than the radius � of the optical
beam field amplitude, the nonlocality is weak
���=wR /��1� and one can use the expansion

I�x�,y�� = I�x,y� + 1
2�xx

2 I�x,y��x − x��2 + 1
2�yy

2 I�x,y��y − y��2

+ �xy
2 I�x,y��x − x���y − y��

to obtain a simplified model of the nonlocal nonlinear cor-
rection to the refractive index n:

�n�I�x,y�� = �n0�I�x,y� + 1
2�xx�xx

2 I�x,y� + 1
2�yy�yy

2 I�x,y�

+ �xy�xy
2 I�x,y�� . �2�

The coefficients ��� depend on R�� ,�� according to the rela-
tion

��� = �
−�

�

R�� − ��,� − ����� − ���2d��d����
−�

�

R���,���

�d��d��, �3�

and, for a Gaussian response, ���=wR�
2 /2. In a suitably cho-

sen and rotated coordinate system the term

��� = �
−�

�

R�� − ��,� − ����� − ����� − ���

�d��d����
−�

�

R���,���d��d�� �4�

arising from the mixed derivative can be set to zero and will
be further neglected. When the beamwidth decreases and be-
comes comparable to the characteristic response length of the
medium, the nonlinearly modulated refractive index notice-
able deviates from this in the local case �see Fig. 1�. There-
fore, nonlocality can have important consequences and has to
be taken into account. It is worth mentioning that the weakly
nonlocal nonlinearity has been recently identified as a stabi-
lizing mechanism in the analysis of the nonlinear response of
the colloidal suspension of dielectric nanospheres �14�. A
similar model has been also investigated in the context of
localized electron states in a discrete isotropic electron-
phonon lattice �25� and Bose Einstein condensate �26�.

A term comprising �2��E�2E� /��2 appears in the general-
ized nonlinear Schrödinger equation �NLSE� when derived
�27� from Maxwell’s equations by keeping the nonzero sec-
ond derivative of the nonlinear polarization. This equation
includes also terms reflecting a deviation from the paraxial
approximation and the presence of a longitudinal component
of the electric field �27�. Its simplified version contains the
most essential term—namely, the one that accounts for the
nonlinear diffraction. The notation “nonlinearly induced dif-
fraction” was introduced for the first time in Refs. �28,29� to

stress the interplay between self-focusing and nonlocal
response.

In the present analysis we adapt the heuristic approach of
Hasegawa �30� initially used for deriving the master equation
for information transfer in optical fibers �NLSE in the case of
an instantaneous Kerr response� to the spatially nonlocal
Kerr-type response. In this way we derive the two-
dimensional �2D� nonlocal NLSE �NNLSE� describing the
evolution of the slowly varying electric-field amplitude
E�x ,y ,z� in weakly nonlocal media:

i

k

�E

�z
+

1

2k2	 �2E

�x2 +
�2E

�y2

+

�n0

n
	�E�2 +

�xx

2

�2�E�2

�x2 +
�yy

2

�2�E�2

�y2 
E = 0. �5�

The Euler-Lagrange equation

�

�x

�L̂

���E�/�x�
+

�

�y

�L̂

���E�/�y�
+

�

�z

�L̂

���E�/�z�
−

�L̂

�E�
= 0

�6�

is equivalent to the NNLSE in the sense of the Lagrange

operator with a density L̂:

L̂ = �i/2k��E�zE
� − E��zE� + �1/2k2����xE�2 + ��yE�2�

− ��n0/2n���E�4 − ��xx/2���x�E�2�2 − ��yy/2���y�E�2�2� .

�7�

In essence, the variational approach requires selection of a
trial function E=E(x ,y ,qi�z�), depending not only on the
transverse coordinates x and y, but also on z by suitable
variational variables �functions� qi�z� �31�. Substituting the

trial function in L̂ and integrating the result over the trans-

verse coordinates one gets the Lagrangian 
L̂�:


L̂„q̇i�z�,qi�z�…� =� � L̂�x,y, q̇i�z�,qi�z�dx dy� , �8�

which has to satisfy the system of Lagrange equations

d

dz

�
L̂„q̇i�z�,qi�z�…�

� q̇i�z�
−

�
L̂„q̇i�z�,qi�z�…�

�qi�z�
= 0. �9�

Overdots denote derivatives with respect to the propagation
coordinate z. The result of the variational procedure is a sys-
tem of ordinary differential equations for the variational
variables qi.

III. TWO-DIMENSIONAL EVOLUTION

Let us analyze a Gaussian beam with a slowly varying
electric-field amplitude
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E�x,y,z� = A�z�exp�−
x2

�x
2�z�

−
y2

�y
2�z�

+ i
k

2
�	x�z�x2 + 	y�z�y2�

+ i
�z�� , �10�

where �� and 	� are the beamwidths and wave-front curva-
tures along the two coordinate system axes, k is the wave
number, and 
 is phase accumulated along the propagation
path length. Following the variational procedure, we get


L̂� = ��/2��x�yA
2��	̇x�x

2 + 	̇y�y
2 + 	x

2�x
2 + 	y

2�y
2�/8

+ ��x
−2 + �y

−2�/�2k2� − �n0�1 − �xx�x
−2 − �yy�y

−2�

�A2/�4n� + 
̇/k� . �11�

Subsequently, we derive the following system of ordinary
differential equations �ODEs� for the variational variables:

�̇x = 	x�x,

	̇x = − 	x
2 + 4/�k2�x

4� − ��n0/n�A2�x
−2�1 − 3�xx�x

−2 − �yy�y
−2� ,

�̇y = 	y�y ,

	̇y = − 	y
2 + 4/�k2�y

4� − ��n0/n�A2�y
−2�1 − 3�yy�y

−2 − �xx�x
−2� ,


̇ = �− 1/k���x
−2 + �y

−2� + k��n0/n�A2��3/4� − �xx�x
−2

− �yy�y
−2� ,

�1/k��d/dz����/2��x�yA
2� = 0. �12�

The last equation reflects the energy conservation P= P0
= �� /2�A2�x�y = �� /2�A0

2�x0�y0. Making use of this law, af-
ter routine transformations, one gets two second-order equa-
tions for the evolution of the beam’s transverse dimensions:

�̈x = 4/�k2�x
3� − 2��n0/n�P0�1 − 3�xx�x

−2 − �yy�y
−2�/���x

2�y� ,

�̈y = 4/�k2�y
3� − 2��n0/n�P0�1 − �xx�x

−2 − 3�yy�y
−2�/���x�y

2� .

�13�

The initial conditions for solving this system are ���z=z0�
=��0 and �̇��z=z0�=	�0��0 for �=x ,y.

Equations �13� admit solutions in the form of elliptic 2D
solitons if �x0=�xs, �y0=�ys, and �̇x� �̇y �0—i.e., 	x�	y
�	x0�	y0=0. Since �̈x�0 implies that

k2�n0

n
	1 − 3

���

��s
2 −

���

��s
2 
 ��s

��s
Ps = 2� �14�

for � ,�=x ,y �����, the last system is equivalent to

��s
2 =

4 + 3k2���� + ����Is�n0/n + 2�������k2Is�n0/n�2

k2�1 + k2���Is�n0/2n�Is�n0/n
.

�15�

Equation �15� and the conservation law Ps= �� /2��xs�ysIs

define parametrically a curve in 3D space. As seen in Fig. 2,

the increase of the beam power results in an asymmetric
beam shrinking �and an increase of the ellipticity� at a non-
negligible anisotropy of the nonlocality ��xx /�yy =2 in our
example�. Again from Eq. �15� one can see that when the
nonlocality acts along one of the coordinates only �e.g., �yy
=0�, it is possible to create an elliptic soliton with a maximal
ellipticity:

�ys
2 /�xs

2 = �1 − 3�xx/�xs
2 �/�1 − �xx/�xs

2 � . �16�

Unfortunately a quantitative comparison with the results in
Ref. �10� is not possible. The measured �10� soliton elliptic-
ity indicates a lower limit of the strength of the nonlocality
���� �0.3 which is well beyond the range allowed by our
approach.

Symmetry in two dimensions means that �xx=�yy =�,
�x0=�y0=�0, and 	x0=	y0=	0. The beam radius ��z�
��x�z���y�z� evolves according to

�̈ = �1/�k2�3���4 − 2k2��n0/n��1 − 4�/�2�P0/�� , �17�

and the soliton power Ps becomes

Ps = 	�

2

 4n

k2�n0�1 − 4�/�s
2�

. �18�

One can see that symmetric nonlocality imposes a lower
limit �s,min

2D to the minimal beamwidth, �s��s,min
2D =2��.

Equations �13� are equivalent to those describing the mo-
tion of a classical particle with coordinates ��x ,�y� and ve-
locities �	x�x ,	y�y� in a potential U with a kinetic energy T
�see Fig. 3�, where

FIG. 2. Parametric plot �xs=�xs�Is�, �ys=�ys�Is�, and Ps

= Ps�Is�. The soliton power and the beam radii are normalized to
their local values. Medium anisotropy �xx /�yy =2.

'

FIG. 3. Two-dimensional case: potential U vs �s normalized to
the soliton beam radius �s���=0�. Dash-dotted curve, ��=0.025;
dashed curve, ��=0.05; and dotted curve, ��=0.1. Beam power
P0=3Ps���=0�.
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U = �2/k2���x
−2 + �y

−2� − 2��n0/n�

�P0�1 − �xx�x
−2 − �yy�y

−2�/���x�y� ,

T = ��̇x
2 + �̇y

2�/2 = �	x
2�x

2 + 	y
2�y

2� . �19�

The coordinates of the global minimum of the potential U
correspond to the soliton radii, whereas the initial negative
total energy �U0+T0
0� limits the region of possible breath-
ing solitons �which, loosely speaking, periodically recover
their intensity profiles�. More precisely, the inequality

4 − 2k2�n0P0

n�
	1 − 2

�

�0
2
 + k2	0

2�0
4 
 0 �20�

is the condition for forming a breathing soliton in the sym-
metric 2D case.

IV. ONE-DIMENSIONAL EVOLUTION

Considering the nonlinear propagation of an one-
dimensional Gaussian beam (E�x ,y ,z�=A�z�exp�−x2 /�x

2�z�
+ ik	x�z�x2 /2+ i
�z��) in a weakly nonlocal nonlinear me-
dium and following the procedure described earlier, one gets
the following reduced system of ODEs for the variational
variables:

�̇x = 	x�x,

	̇x = − 	x
2 + 4/�k2�x

4� − ��2�n0/n�A2�x
−2�1 − 3�xx�x

−2� ,


̇ = �− 1/k��x
−2 + k��2�n0/n�A2��3/4� − �xx�x

−2� ,

k�d/dz����/2�xA
2� = 0. �21�

Accounting for the conservation of the beam power P0 we
arrive at the second-order ODE describing the changes in the
beamwidth �x:

�̈x = 4/�k2�x
3� − �2�n0/n��P0/����x

2���1 − 3�xx�x
−2� .

�22�

This equation admits a soliton solution when �x0=�xs
=const, �̇x�0, and �̈x�0 under the plane-wave condition
	x�	x0=0. The analytical result for the soliton power Ps,

Ps =
2��

k2�xs��n0/n��1 − 3�xx/�xs
2 �

, �23�

indicates that in each particular case of nonlinear and nonlo-
cal parameters �n0 and �xx the soliton radius �xs has to ex-
ceed the minimal value of �xs,min

1D =�3�xx. In agreement with
intuition, the higher the nonlocality, the larger the minimal
achievable width of both the 1D and 2D beams. For the same
degree of nonlocality the difference in the dimensionality is
reflected in the ratio �s,min

2D /�xs,min
1D =2 /�3.

At this point it is important to compare the variational
results with the exact 1D theory of Ref. �19�. Figure 4 clearly
shows that the Gaussian trial function used here approxi-
mates reasonably well the shape of the actual nonlocal soli-
ton. Qualitatively, the deviation decreases with higher non-
locality. Since the nonlocality smooths out the refractive
index profile, the soliton width increases monotonically with
��. In Fig. 5 we present this dependence and compare it with
exact analytical results �19�. As is evident, the agreement is
fairly good and the relative differences between the beam
radii remain below 2%. In Fig. 6 we show the relation be-
tween soliton power and degree of nonlocality �see Eqs. �18�
and �23��. Shaded regions mark the respective parameter
ranges in which the combined action of linear and nonlinear
diffraction cannot be canceled by the beam’s self-focusing.
Therefore, no solitons can be formed there. The interval, in

FIG. 4. Intensity profiles of 1D nonlocal spatial solitons for
different values of the parameter ��=�xx /�xs

2 ��=0�. Solid curves,
variational results; dashed curves, exact analytical solutions
�see Ref. �19��.

'

'

FIG. 5. Soliton width �xs normalized to its respective value
�xs���=0� in the local case as a function of the degree of nonlocal-
ity, ��=�xx /�xs

2 ��=0�. Solid and dashed curves: variational and ex-
act analytical �19� results for P= Ps.

'

'

FIG. 6. Rise of the normalized soliton power Ps / Ps ���=0� with
increasing the nonlocality ��. Solid curves: results from Eqs. �23�
and �18� in the 1D and 2D cases, respectively. Solid horizontal line:
local medium. Minimal power levels needed to form breathing soli-
tons in 1D �dotted curve� and 2D �dashed curve�. Light and dark
shaded area: nonsoliton regions of a total domination of the
intensity-dependent diffraction.
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which the weak nonlocality approximation and the model
NNLSE hold, spans up to ���0.1. The minimal power lev-
els needed to form breathing solitons in the 1D �dotted
curve� and 2D �dashed curve� cases correspond to inequali-
ties �26� and �20�, respectively. The dotted curve indicates
that the 1D breathing soliton can be excited at power levels
well below the level needed to form a 1D local spatial soliton
�solid horizontal line�. The solid curves show that the soliton
power increases with nonlocality ��=�xx /�xs

2 ��=0�.
Integrating Eq. �22� ones one gets

�̇x = −
4

k2�x
2 +

4�n0P0

��n�x
	1 −

�xx

�x
2 
 +

4

k2�x0
2

−
4�n0P0

��n�x0
	1 −

�xx

�x0
2 
 + 	x0

2 �x0
2 , �24�

which allows one, in the case of a nonstationary propagation
along the nonlinear medium, to calculate the extrema �x,extr
of the beamwidth �x�z� under the initial condition �̇x=0 by

�1 − k2�n0P0�x0

n��
	1 −

�xx

�x0
2 
 +

k2	x0
2 �x0

4

4 ��x,extr
3

�x0
3

+ k2�n0P0�x0

n��
	�x,extr

2

�x0
2 −

�xx

�x0
2 
 −

�x,extr

�x0
= 0. �25�

This equation has two real and positive solutions correspond-
ing to minimal and maximal physical beam radii �x,min and
�x,max, respectively, only if

1 − k2�n0P0�x0

n��
	1 −

�xx

�x0
2 
 +

k2	x0
2 �x0

4

4

 0. �26�

Since �x�z� is allowed to oscillate between �x,min and �x,max,
inequality �26� �the 1D analog of Eq. �20�� is the condition to
create a breathing solitary wave. The soliton is a particular
case of a breather for which �xs=�x,min=�x,max. It is worth
noting that Eq. �26� can be obtained from the condition of a
negative total energy �U+T
0� with a potential U �corre-
sponding to Eq. �22�� and kinetic energy T:

U = 2/�k2�x
2� − 2��n0/n�P0�1 − �xx�x

−2�/���x� ,

T = �̇x
2/2 = 	x

2�x
2. �27�

In Fig. 7 we show the evolution of the beam radius �x
along the weakly nonlocal ���=0.05� 1D nonlinear medium.
The radius �x of the beam is normalized to that of the soliton
beam �xs �horizontal dashed line�, and its evolution is fol-
lowed up to 16 Rayleigh diffraction lengths. Initial beam
focusing is denoted with 	
0. The oscillating solid curve
for 	=0 corresponds to �x0=0.8�xs. The appended grayscale
image of the 1D beam intensity clearly shows periodic beam
broadening and contraction after propagation path length z
�6.2LD. In an agreement with intuition, a gradually broader
��x0=2�xs� and initially focused �	�0� bright beam also
undergoes focusing until the combined action of diffraction
and nonlocality prevails. The shaded area in the graph de-
notes region not accessible for soliton formation according to
inequality �26�. Long-dashed and short-dashed steep curves

show the evolution of an initially unfocused narrow input
beam �	=0, �x0=0.27�xs� and a wide focused beam ��x0
=1.5�xs, 	
0� starting from �respectively, penetrating in�
the forbidden region. The beam power is kept P= Ps. As
seen, beams can penetrate in the forbidden region only once
thereafter starting to continuously diverge.

V. METHOD FOR ESTIMATING THE STRENGTH OF
THE NONLOCALITY

In the reminder of this work we will show that if breath-
ing solitary waves are excited in a weakly nonlocal medium,
it is possible to estimate the strength of the nonlocality.

A. One-dimensional case

Let us rewrite Eq. �25� in more convenient form

n

�n0

�x,extr

�x0
�1 − �1 + k2	x0

2 �x0
4 /4��x,extr

2 /�x0
2

k2P0�x0/��
�

+
�xx

�x0
2 	1 −

�x,extr
3

�x0
3 
 =

�x,extr
2

�x0
2 	1 −

�x,extr

�x0

 , �28�

from which the linear relation between 1 /�n0 and �xx is
transparent. At known initial conditions �beam power P0,
beam radius �x0, and wave-front curvature 	x0� one has to
measure two extremal beamwidths �x,extr. Since this relation
is fulfilled in all situations in which there is at least one real
positive value of �x,extr �if unique, it is a minimum�, varying
the accessible initial parameters one can measure the corre-
sponding values of �x,extr and calculate the ratio between the
extremal and the initial beamwidths in the jth measurement
�� j =�x,extr

j /�x0
j �. Thereafter by solving a determined system

of linear equations for each pair of extrema,

n

�n0
� j

1 − �1 + k2	x0j
2 �x0j

4 /4�� j
2

k2P0j�x0j/��
+

�xx

�x0j
2 �1 − � j

3� = � j
2�1 − � j� ,

�29�

one can retrieve �n0 and �xx.

FIG. 7. Graph: evolution of the normalized beam radius along
the nonlocal nonlinear medium with �	�0� and without �	=0�
initial beam focusing and defocusing. ��=0.05. Image: breathing
soliton with an initial radius �s=0.8�xs and an initial plane wave
front �	=0�. See text for details.
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In the particular case of an initial planar wave front
�	x0=0� one can prove that one of the values of �x,extr cor-
responds to the initial beamwidth ��x,extr=�x0� and Eqs. �28�
and �29� are trivial. The second value is related to the extre-
mum limiting the deviation of the width of the breathing
soliton from the initial one. In this case �	x0=0� one has to
measure in the experiment the corresponding extrema for
two different initial beam powers �or beam radii� and solve
Eq. �29�.

In order to verify these predictions we treated the gray-
scale image shown in Fig. 7 as an experimental one. Since
for the planar initial conditions the minima are not informa-
tive �trivial solutions�, we took the value of �n0 from the
model parameters. Interpreting one pixel of the computed
image shown in Fig. 7 as the detector spatial resolution, we
deduced ��=0.048, in a close agreement with the value of
0.05 used in the actual simulation. Interpolating the quasiex-
perimental beam profiles, thus increasing twice the accuracy
in determining �x,max, the error in retrieving �� is reduced to
below 1%.

As a next step we solved numerically the NNLSE �Eq. �5�
in Ref. �19�� for a collimated input Gaussian beam and non-
locality strength ��=0.1 and 0.05, as well as in the nonlinear
local and linear cases. The last two simulations are necessary
to calibrate the longitudinal scale and the conserved power
P0 and the soliton power Ps���=0� in the local case. By
using the explicit relation �23�, Eq. �28� becomes quadratic
in �xx:

2�x,extr

��sol�1 − 3�xx/�sol
2 �

	1 −
�x,extr

�x0

 + �xx	1 +

�x,extr

�x0
+

�x,extr
2

�x0
2 


= �x,extr
2 . �30�

Here �0, �sol and �x,extr are the initial, local soliton, and
extremal breathing soliton radii, respectively, and �
= Psol / P0. The top graph in Fig. 8 shows the 1D evolution of
the peak intensity and the radius of an initially Gaussian
beam with �x0�z=0�=�2 �at 1 /e intensity level�. Retrieving

�sol=1.8 and �=2.26 from the numerical data and recalling
that the definition of nonlocality strength in Ref. �19� is re-
lated to our notation by ��=�xx / �2�x0

2 �, we calculated �� for
each extremum of the width of the breathing beam. Such
found real and positive values are plotted in the bottom
graph in Fig. 8. The dashed line is intended to guide the eye
through the results, obtained for nonextremal values of �x.
The straight line denotes the retrieved mean value of the
degree of nonlocality, ��=0.053, close to the value of 0.05
used in the numerical simulation.

At the end we would like to note that if the input beam is
focused �	x0�0� Eqs. �28� and �29� are informative when �i�
the input beamwidth decreases until �x,extr=�x,min is reached
and thereafter starts to diverge monotonically �see the steep
curves in Fig. 7� or �ii� the breathing soliton is excited �see
Fig. 7�.

B. Symmetric two-dimensional case

Following the same approach, integrating Eq. �17� once,
we obtain an ODE

�̇ = −
4

k2�2 +
2�n0P0

�n�2 	1 − 2
�

�2
 +
4

k2�0
2

−
2�n0P0

�n�0
2 	1 − 2

�

�0
2
 + 	0

2�0
2, �31�

according to which the extrema of the beamwidth �=��z�
are solutions of the equation

�4 − 2k2�n0P0

n�
	1 − 2

�

�0
2
 + k2	0

2�0
4��extr

4

�0
4

+ k22�n0P0

n�
	�extr

2

�0
2 − 2

�

�0
2
 − 4 = 0. �32�

When the input beam has a plane wave front, �extr is either
equal to �0 or to �0 /�2�0

2 /�s
2−1, where �s is defined by Eq.

�18� after the formal substitution Ps→P0. Rearranging the
terms one gets an equation

n

�n0

�extr
2

�0
2 �4 − �4 + k2	0

2�0
4/4��extr

2 /�0
2

2k2P0/� � +
2�

�0
2	1 −

�extr
4

�0
4 


=
�extr

2

�0
2 	1 −

�extr
2

�0
2 
 , �33�

which is well suited for the processing of experimental data
as described in the previous 1D case. In a real experimental
situation the medium absorption �if non-negligible� has to be
measured independently and the beam power at a particular
distance has to be rescaled. Let us mention again that all
presented results are valid under the assumption of a weak
nonlocality. Their applicability to particular experimental
conditions has to be carefully clarified.

VI. CONCLUSION

Starting from a phenomenological model of a spatially
nonlocal Kerr-type nonlinear medium we heuristically de-

FIG. 8. Numerical solution of the NNLSE for nonlocality
strength ��=0.05 �upper graph� and retrieved values of �� �lower
graph�. See text for details.
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rived a nonlocal nonlinear Schrödinger equation in the limit
of weak nonlocality. In this equation and in the obtained
variational results for Gaussian beam propagation the nonlo-
cality appears in form of nonlinear diffraction. The interplay
between the nonlinear diffraction and self-focusing is found
to result in an increase of the power needed to form nonlocal
spatial solitons. The 1D variational results agree qualitatively
and quantitatively well with the exact nonlocal soliton solu-
tions of Ref. �19�. The Gaussian trial function we used ap-
proximates reasonably well the shape of the nonlocal soliton.
Our variational prediction for the soliton width as a function
of the degree of nonlocality differs by less than 2% from the

exact solution. The derived necessary conditions for generat-
ing breathing solitons enabled us to formulate a procedure
for estimating the degree of weak nonlocality from the ex-
perimental data. Its feasibility is verified by analyzing nu-
merical results obtained by directly solving the weakly non-
local nonlinear Schrödinger equation.
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